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This is a set of notes dealing with the representations of compact groups over the field R or C. The
key ideas of representation theory are covered; namely Schur’s lemma, the orthogonality theorems,
the Peter-Weyl theorem and the Parseval-Plancherel theorem. We discuss some operations that can
be performed on representations, including the direct sum, induced/restriction and tensor product
representations. Armed with these tools, we discuss a few specific examples of group representations
that occur frequently in physics and deep learning. We also discuss a few more ‘exotic’ topics that
are not usually covered in representation theory textbooks. We focus on the representation theory of
the symmetric group S,,, Shur Polynomials and the Schur-Weyl duality. Finally, we review Bochner’s
theorems on commutative and non-commutative groups with applications to kernel methods.
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I. INTRODUCTION

Representation theory is the mathematical framework for studying abstract groups by representing their elements
as linear transformations (or matrices) on vector spaces. The representation theory of compact groups is particularly
elegant, and is a powerful generalization of standard Fourier analysis. The main tool in representation theory of
compact groups is the decomposition of the group actions into simpler, irreducible representations; analogous to
breaking down complex waveforms into sinusoidal components in Fourier analysis. Methods in representation theory
can be utilized anytime a system exhibits symmetry or can be described by a group action. These methods allow us to
analyze and simplify problems across mathematics, physics, and engineering by exploiting the structure of underlying
Symimetry.

A. Who Cares? Why Should I Read This?

As mentioned previously, there exist many excellent textbooks on group theory [7, 14, 30, 34]. These books
were published before the advent of equivarient deep learning [5]. I hope that these notes provide an overview of
representation theory on compact groups which includes both some of the recent developments in equivariant learning
theory and the historical uses of representation theory in physics. One very fruitful research direction has been to
take classical representation theory and apply it to machine learning problems [10, 16, 22, 27]. The goal of these notes
is to give the reader a set of tools that can potentially be applied to equivarient deep learning research, while also
discussing some of the historical development of the subject.

B. History of Representation Theory

The representation theory of compact groups has its roots in 19th-century harmonic analysis and the study of
symmetry in physics and mathematics. The history of the representation theory of compact groups can be split
into two eras: Commutative and Non-Commutative. The Commutative era began with the development of classical
electromagnetism and Joseph Fourier’s discovery of Fourier Analysis in 1807. The idea of decomposing functions
into periodic components led to the representation theory of the circle group (also called U(1) or SO(2)) and its
finite subgroups (namely Zy the cyclic groups of order N). The non-commutative era was mostly motivated by the
development of quantum mechanics in the 1920s. In quantum mechanics, symmetries act on Hilbert space states to
form representations. For this reason, projective representations over the projective complex space. The complex
representations of groups like SU(2) or SU(5) form the backbone of many results in quantum chemistry and particle
physics. In the early 20th century, Hermann Weyl established a foundation for compact groups, proving that every
finite-dimensional representation of a compact group can be decomposed into irreducible representations.

Timeline:

e First formal definition of a group: Evariste Galois defines the concept of a group in the context of solving polynomial
equations in 1832.

e First formal definition of a group representation: Ferdinand Georg Frobenius introduces the concept of group represen-
tations (as linear transformations over vector spaces) in 1896.

e Sophus Lie writes ‘Theorie der Transformationsgruppen’, establishing the basics of Lie group theory: 1890.
e Frobenius develops character theory for finite groups: 1896-1897.

e Hermann Weyl proves that every finite-dimensional representation of a compact group can be decomposed into irreducible
representations: 1925.

e Fritz Peter and Herman Weyl develop the Peter-Weyl theorem, a key result in harmonic analysis on compact groups:
1927.

e Eugene Wigner publishes Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra: 1931. (This
work was a cornerstone in applying representation theory to quantum mechanics and earned Wigner the Nobel Prize in
1963.)

e John von Neumann formalizes the connection between group theory and quantum mechanics, particularly in the context
of symmetry groups: 1930s.

e Claude Chevalley develops the algebraic theory of Lie groups and Lie algebras: 1940.

e Harish-Chandra develops the theory of foundations of harmonic analysis on semisimple Lie groups. Harish-Chandra
developes the Harish-Chandra integral formula: 1950s-1960s.



Timeline of Key Developments in Group and Representation Theory
L 5¢832: Galois defines groups

>g896: Frobenius introduces representations
5¢890: Lie's work on transformations
5¢896.5: Frobenius' character theory

52925: Weyl: compact group representations

>g927: Peter-Weyl theorem
52931: Wigner: group theory in quantum mechanics
*935: Von Neumann: group theory & QM
54940: Chevalley's Lie groups theory

$¢955: Harish-Chandra: harmonic analysis

1840 1860 1880 1900 1920 1940 1960
Year

FIG. 1: A timeline of some key devolvements in representation theory.

C. Applications of Representation Theory

We summarize some applications of representation theory of compact groups.
e Need to add more citations here

Physics and Chemistry Compact groups, such as SU(2) and SU(3), play a critical role in quantum mechanics
and particle physics, describing spin, angular momentum, and the Standard Model’s gauge symmetries. Molecular
symmetry groups are compact, and their representations explain spectral lines, bonding, and reaction mechanisms.

Harmonic Analysis, Topology and Geometry In algebraic topology, symmetry groups are used to study invariants of
spaces. Compact Lie groups, feature prominently in the study of fiber bundles and gauge theory, connecting topology
with quantum field theory. Representations of these groups help classify principal bundles and elucidate the structure
of topological spaces through their symmetries.

Engineering and Signal Processing Representation theory has a broad impact in engineering and computer graphics.
Spherical harmonics efficiently encode 3D models by capturing their rotational symmetries. Spherical harmonics are
used in surface reconstruction, lighting models, and shape recognition in 3D imaging.

Equivariant Machine Learning Recent applications include equivariant neural networks, leveraging compact groups
to build models invariant to symmetries of the problem instance.

In summary, the representation theory of compact groups bridges abstract algebra, geometry, and analysis with
far-reaching implications across both pure and applied sciences. It continues to be a dynamic area of research with
modern applications in deep learning and theoretical physics. These note provide a good introduction to some of
the techniques and ideas that I have found useful. These notes are a compilation of my own work [4, 15-17, 36]. I
emphasize that these notes are not a comprehensive exposition of representation theory and if you are interested in
learning more, please see [6, 7, 14, 30, 34].

II. GROUP THEORY

We establish some notation and review some elements of representation theory. For a comprehensive review of
representation theory, please see [29, 34]. The identity element of any group G will be denoted as e. A subgroup H
of G will be denoted as H C G. We will always work over the field C unless otherwise specified.

Group Theory A group is a mathematical description of a symmetry. Formally, a group G is a non-empty set combined



with a associative binary operation - : G x G — G that satisfies the following properties

existence of identity: e € G, s.t. Vge G, e-g=g-e=g

1 1

existence of inverse: Vg € G, = 3¢ '€ G, g- g t=g ' -g=e

Oftentimes, we wish to work with a group that can acts on a set of objects in a natural way. For example, when we
think about three dimensional rotations, we naturally think of how rotations act on objects. This idea is formalized
with the concept of a group action.

A. Group Actions

Let Q be a set. A group action ® of G on € is a map ¢ : G x Q2 — Q which satisfies

Identity Property: Vw € Q, ®(e,w) =w (1)
Compositional Property: Vgi1,92 € G, Yw € Q, P(g192,w) = ®(g91, P(g2,w))

We will often suppress the ® function and write ®(g,w) = g - w.

QN o
J<I>(gw) l<1>'(9’-)

QLN oY

FIG. 2: Commutative Diagram For G-equivariant function: Let ®(g,-) : G x 2 — Q denote the action of G on Q.
Let ®'(g,-) : G x Q" — Q' denote the action of G on Q. The map ¥ : Q — Q' is G-equivariant if and only if the
following diagram is commutative for all g € G.

Let G have group action ® on Q and group action @' on €’. A mapping ¥ : Q — Q' is said to be G-equivariant if
and only if

Vge G,Vwe Q, U (P(g,w)) =P (g,¥(w)) (2)

Diagrammatically, the map ¥ is G-equivariant if and only if the diagram IT A is commutative.

B. Lie Groups

Lie group theory is the study of continuous groups. We review some basic concepts of Lie group theory. A full
treatment of Lie group theory can be found in [12, 14, 30, 34]. A Lie group G is a group that is also a smooth manifold
with the requirement that, for all g, h € G, the map g xh — gh : G x G — G is smooth and themap g = ¢~ ' : G = G
is smooth. A homeomorphism of Lie groups is a smooth map ® : G — H that satisfies the relation

V9,9 € G, ®(99') = ®(9)P(g")

The Haar measure [31], is the volume element dg of the Lie group G which is left invariant, we have that
Vh € H, d(hg) = / dg
geG geG

For compact groups, the Haar measure is both left and right invariant so that d(hg) = dg = d(gh). Left and right
invariance uniquely defines the Haar measure dg on a compact group. Homogeneous spaces X = G/H of G inherit a
measure dr on X from the Haar measure. The space of volume elements on X is one-dimensional so

Vge G, dg-z)=A(g " )dz

must hold where A(g) : G — C is called the modular function of the volume element dx. A famous result of (cite)
states that all compact groups are unimodular. In the unimodular case the volume element dx is called the invariant
measure on G.



1. Lie Algebra

A Lie algebra g is a vector space equipped with a anti-symmetric two-form [-,-] : g X g — g which satisfies the
Jacobi identity,
Jacobi: [X,[Y,Z]]+[Y,[Z,X])]+[Z,[X,Y]] =0

Semi-Simple Lie Algebras Let X; be a basis of the Lie algebra g. The Lie algebra g is called semi-simple if there is
no proper subset J; of the X; such that the J; are an idea of g under the Lie bracket operator [-,-]. A Lie algebra is
called simple if it can not be decomposed into a direct sum of semi-simple Lie algebras. Just as we speak of Lie group
homeomorphisms, a homeomorphism of Lie algebras is a map ¢ : g — b that preserves the Lie bracket of g so that

VX, Y eg, o(X,Y]) = [o(X),o(Y)]

Let X; be a basis of the Lie algebra g. The structure constants fz’; of g are defined as
(X0, X5 =D X
k

so that the constants fF are the decomposition of the Lie bracket in the vector space g.

j
III. REPRESENTATION THEORY

Let V be a vector space over the field C. A complex representation (p, V') of a group G consists of the vector space
V and a group homomorphism p : G — Hom[V, V]. By definition, the homomorphism p must satisfy

Vg.g' € G, Yo eV, p(g)p(g')v = p(gg')v

Heuristically, a group representation can be thought of as the embedding of an group (which is an abstract mathe-
matical object) into a set of matrices (which we as computer scientists like because matrices are naturally stored as
arrays!). Two representations which look very different can actually be the same representation. Specifically, let (p, V)
be a representation. Let U be an invertible matrix. By performing a change of basis, we can define the representation
(UpU~L,V) as

Vg € G, (UpU ) (g) - v="Up(g)U v
It is easy to see that (UpU =1, V) is a valid group representation as
Vg € G,(UpU™Y)(g9) = (Uplgg"\U™) = (Up(g)U ' Up(gHU ™) = UpU ) (9)UpU*)(g") (3)
Two representations (p, V') and (o, W) are said to be equivalent representations if there exists a matrix ®
Vge G, ®p(g) =a(g)®

The linear map ® is said to be a G-intertwiner of the (p, V') and (o, W) representations. The space of all G-intertwiners
is denoted as Homg|[(p, V'), (0, W)]. Specifically,

Homg[(p, V), (o, W) ={ ®:V =W | Vg€ G, Pp(g) =0(9)P, P islinear }

The sum of two G-intertwiners is again G-intertwiner and Homeg/[(p, V), (o, W)] forms a vector space over C. The
vector space of of G-intertwiners from a representation to itself is called the G endomorpism space of the representation

V),
Endc[(P, V)] = HOmg[(p, V)’ (,0, V)}

which we will refer to as the endomorpism space of (p, V). Much of classical group theory studies the structure of the
intertwiners of representations [7]. A representation (p,V) is said to be a unitary representation if the vector space
V can be equipped with an inner product (-, -) such that

Vg e G, Yo,weV, (p(g)v,p(g)w) = (v,w)



The unitary theorem in representation theory [7] says that any representation of a compact group G is equivalent
to a unitary representation of G. A representation is said to be reducible if it breaks into a direct sum of smaller
representations. Specifically, a unitary representation p is reducible if there exists an unitary matrix U such that

k
VgeG, plg) =UEPoi(g)U"

=1

where k > 2 and o; are smaller representations of G. The set of all non-equivalent unitary representations of a group
G will be denoted as GG. All representations of compact groups G can be decomposed into direct sums of irreducible
representations. Specifically, if (o, V') is a G-representation,

(0.V) = U@ mt(p. V,))UT
peé

where U is a unitary matrix and the integers m/ denote the number of copies of the irreducible (p,V,) in the
representation (o, V).

A. Lie Group and Lie Algebra Representations
Representations of Lie groups are defined in the same way as representations of finite groups. Let V be a vector
space. A representation of a Lie group is a Lie group homeomorpism p : G — GL(V) and a vector space V satisfying,

Vge G, YoeV, plgg)v=pg)p(g)v

We can similarly speak of a Lie algebra representation as a homeopmorpism o : g — GL(V') that preserves Lie bracket
structure

VX, Y eg, o([X,Y]) =[o(X),o(Y)]

If G is a connected group, the map exp : g — G, is defined as

o0 ‘t n
VX €g, exp(itX) =Y (Zn? Xn
n=0 ’

The key property of exp is that the exponential map exp commutes with homeomorphism of algebra and group IIT A,
so that there is an isomerism between Lie algebra representations and Lie group representations.

d®|e
JEEERSELN h

g
cpr{ cxpl
G—2 @[

FIG. 3: The exponential map: Let ® : G — H be a homeomorphism of groups. Let d®|. : g — b be the derivative
map evaluated at the identity of G. Then, the above map is commutative and d®|. is a Lie algebra homeomorphism.

1. Adjoint Representation

There are two canonical representations of the Lie algebra and Lie group known as the adjoint representations.
a. Little Adjoint ad Representation — The adjoint (sometime called the little adjoint) ad representation is a
canonical representation of a Lie algebra. The adjoint action is defined via the formula

ad(X)Y = [X,Y]

So that as a matrix the ad representation is of dimension equal to the number of Lie algebra basis elements. The
adjoint action satisfies

[ad(X), ad(Y)] = ad([X, Y])

which preserves the Lie bracket structure and is thus a valid Lie algebra representation. The adjoint action acts
directly on g, and the dimension of the adjoint representation is the dimension of the vector space g.



b. Big Adjoint Ad Representation — There is an analogous adjoint (sometimes called the big adjoint) Ad repre-
sentation of the Lie group G on g. Consider the conjugation map ®, : G — G on the Lie group G given by

®4(h) = ghg™*

the conjugation map is an Lie automorpism of G. The adjoint map Ad, evaluated at g € G is then the conjugation
map evaluated at the identity

Vge G, Ady=dd,|.:T.(G)— T.(G)

so that for fixed g € G, Ady : g — g. Thus, Ad, : G — aut(g). Let X € g be Lie algebra element,

d
VgeG, AdX = %[gexp(tX)g‘lHt:o

Note that
Vg,g' € G, Adg o Adg/ = Adgg/

so that (Ad,g) is a Lie group representation of G with dimension equal to the vector space dimension of g. Let (-, -)
be an inner product on g. The inner product (-, -) is said to be Ad-invariant if and only if,

Vge G, Vz,ycg, (x,y) = (Adyx, Adyy)

IV. SCHUR’S LEMMA

Schur’s lemma is one of the fundamental results in representation theory [34]. Let G be a compact group. Let
(p, V) and (o, W) be irreducible representations of G. Then, Schur’s lemma states the following: Let ® : V' — W be
an intertwiner of (p, V) and (o, W). Then, ® is either zero or the proportional to the identity map. In other words,

itvg € G, Bplg) = o(g)d — {4 TN PV)=(0W)

® = 0 if else

Equivalently, if (p, V) and (o, W) are irreducible representations, the space of intertwiners of representations satisfies

Home|[(p, V), (o, W) = {  CH@PV)=(0W)

0 if else

A corollary of Schur’s lemma is the following: Let (p, V') be a irreducible representation of G. Let M € C%*d be a
matrix. Suppose that

Vge G, p(g)M = Mp(g)

holds. Then, M is proportional to the identity matrix. The constant of proportionally can be determined by taking
traces. Specifically,

M =

Schur’s lemma is the key result of representation theory. Schur’s lemma
By convention, the set of all non-equivalent representations of a group G will be denoted as

G ={ (0,W,) | Representative irreducibles of G }
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A. Extended Shur Lemma

Schur’s Lemma can be extended to reducible representations. Let (p,V,) and (o,V,) be G representations which
decompose into irriducibles as

(0. V) = U@ m2(r. WU (0.Vs) = VIR me(r. W)V
red Ted

where U,V are fixed unitary matrices that diagonalize the p and o representations, respectively. Then, the vector
space of intertwiners between (p,V,) and (o, V,) has dimension

dim Homg((p, V,), (0, Vs)] = Z mPms?

Teé

Furthermore, elements of the space Homg[(p,V),),(0,V,)] have block structure.  Specifically, any ® €
Homg([(p, V,), (0, V)] can be parameterized in block diagonal form as

o=U@P o @4,V

Ted
and each block @7 is a m? x mZ matrix written as

T T T
PT, P . DL

T T T
P = (I)Ql @22 (I)2m$

T T T
Doy Py (I)m‘;m:

where each ®7; € C is a complex constant and d, = dim(7, W) is the dimension of the irreducible G-representation
(7, W>).

V. REAL, COMPLEX AND PSEUDOREAL REPRESENTATIONS

Let (p,V) be a irreducible unitary representation of a compact group G over a field of characteristic zero. The
complex conjugation of the representation p is again a representation of G with action

Vg € G,plg) -v=plg)v

A representation is said to be a self-dual representation if there exists an invertible matrix U such that
Vge G, plg)=Up(g)U™!

Now, using the unitary of the representation (p, V) we have that

plg™") = p(9)" = n(9)])"
If we assume that the matrix p is self-dual, we have that

plg™") = [p(9)]" = [Up()U )" =U Tp(9)"U"
Thus, we must have that
Vge @, (UU )plg) =p(e)U'UT)

Thus, by Schur’s lemma, we must have that

(UT'UT) = My,
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where A € C is a constant. This implies that
U=\U"
invoking this relation twice, we must have that A = £1. Thus, a self-dual representation satisfying
plg) =Up(g)U™"
must always satisfy the constraint that
Ul =+U

so that the matrix U is either symmetric or anti-symmetric. Furthermore, the matrix U can always be chosen to be
unitary UUT = 1 = UTU. We thus have that

UU=+=UU and UUT =+ =UTU

A. Frobenius-Schur Indicators

To classify irreducible representations as real, complex, or pseudoreal, we use the Schur indicator. For an irreducible
unitary representation (p, V') of a compact group G, the Schur indicator v is defined as:

1
V= @ QEZG X(92)7
where x is the character of p, and |G| is the order of the group G. The Schur indicator takes the following values:
e v = +1: The representation is real (orthogonal), i.e., p(g) = Up(g)U ! with UT = U.
e v = —1: The representation is pseudoreal (symplectic), i.e., p(g) = Up(g)U ! with UL = —U.

e v = (: The representation is complex, i.e., p is not equivalent to p.

B. Connection to Self-Dual Representations

For self-dual representations, v determines the symmetry properties of the intertwining matrix U. Specifically:
e For v = +1, the matrix U is symmetric (U7 = U).
e For v = —1, the matrix U is antisymmetric (UT = —U).
These properties align with the condition derived earlier:

UT = +U.

VI. HARMONIC ANALYSIS

Harmonic analysis is a branch of mathematics that explores the representation of functions or signals as the
superposition of basic waves, and studies the properties and applications of these representations.

Applications of harmonic analysis are widespread across numerous disciplines. In engineering, it is pivotal in signal
processing, enabling the filtering and compression of signals. In physics, it aids in solving differential equations that de-
scribe physical phenomena. Moreover, harmonic analysis has significant implications in number theory, representation
theory, and even neuroscience, where it assists in understanding complex patterns of neural activity.

Harish-Chandra’s development of harmonic analysis on Lie groups will be discussed in a later section (cite). Harish-
Chandra made profound contributions to harmonic analysis, particularly in the context of semisimple Lie groups. His
work laid the foundation for the representation theory of these groups, developing the theory of Eisenstein integrals
and the Plancherel theorem for semisimple Lie groups. These contributions have been instrumental in advancing the
field and continue to influence contemporary research.
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A. Irreducible Representation Orthogonality Relations

Matrix elements of irriducibles representations satisfy a set of orthogonality relations [35]. Specifically, let p and o
be irreducible representations of the group G. Then,

; G
Z Pkk’ (g)cr(g)Im/ = |di|6p,<75kn5k/n’
geG P

where |G| is the cardinality of the group. These relations are the cornerstone of generalized harmonic analysis.
Specifically, when averaged over elements of the group G, matrix elements of non-equivalent representations form
an orthogonal basis. By the Peter-Weyl theorem, which is discussed later VIB, matrix elements of irriducibles
representations also form a complete set.

1. Character Theory

The character of a representation is a map x, : G — C defined as

The character is invariant under normal transformations x,(g) = x,(hgh™'). Furthermore, the character is indepen-
dent of the choice of basis of the representation. Specifically, under a change of basis p(g) — Up(g)UT, the character
is unchanged as xy v (9) = Tr[Up(9)UT] = Tr[p(g)UTU] = Tr[p(g)] = x,(g). Using the orthogonality relations VIA,
any two irriducibles p and p’ characters satisfy the orthogonality relation,

/ dg x,(0)xp (9) = 8,0 |G
geG

The set of characters forms an orthonormal, but not complete, set of basis functions on G. In many group theory
applications we deal with functions which are invariant under group conjugation

Vg,h € G, flghg™") = f(h)

such functions f are called normal. Characters of groups form a complete basis over the set of normal complex valued
functions defined on G [7].

B. Peter-Weyl Theorem

The Peter-Weyl theorem [7] states that all representations of compact groups can be decomposed into a countably
infinite sets of irreducible representations. Consider the functions

F={f]f:G=C}

i.e. all complex valued functions defined on G. The set F forms a vector space over the field C. The group G acts on
vector space F in the natural way. Specifically, define the group action A : G x F — F as

VfeF, V9.9 €G, (A Ng)=Fflg'g)eF

The action satisfies AgA\g» = Agg- and is a group homeomorphism. The left-regular representation of a group is defined
as (A, F). The Peter-Weyl theorem [7] states that

()‘7]:) = U[@ dP(p7 VP)]UT
pECJ

where U is the unitary matrix. Thus, the left-regular representation decomposes into d, copies of each (p,V))
irreducible. In other words, the Peter-Weyl theorem states that matrix elements of irreducible G-representations form
an orthonormal base of the space of square integrable functions on G.
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1. Fourier Transform on Groups

The Peter-Weyl Theorem allows for the Fourier Transform on groups [7]. Specifically, let G be a compact group.
Let f € F. The Fourier coefficient with respect to the p-th irreducible is defined as

fr= /QEG dg f(g)p(g)

where each f* € C%*d is a complex d, x d, matrix. The Inverse Fourier transform is then defined as
F9) =Y d,Trlp(g™ ") f*]
peé

a. Fourier Transform on Abelian Groups The standard Fourier Transform can be recovered by considering com-
mutative groups. Specifically, let Zx be the cyclic group of order N. Let g be a generator of Zx. Then, all irreducible
representations of Zy are one dimensional and take the form

pr(g") = exp(ﬁ)

where 1 < k < N is an integer. Then, using the Fourier Transform on groups decomposition VIB 1, we have that

ikn

al 1 ikn
fk=2fnexp(w) fn= NZ;kaXP(—W)
which is the standard Fourier transformation for a discrete single-variable waveform.

C. Parseval-—Plancherel Theorem on Compact Groups

In Fourier analysis, Parseval’s theorem states that the total energy of a function f(x) in the time (or spatial) domain
is equal to the total energy of its Fourier transform f(§) in the frequency domain. Specifically, for a square-integrable
function f(x), the theorem is expressed as:

R GRS

where f (&) is the Fourier transform of f(x). This result demonstrates the conservation of energy under the Fourier
transform and is fundamental in signal processing, physics, and engineering, ensuring that no energy is lost when
moving between domains. The Parseval-Plancherel is the non-commutative generalization of the Parseval theorem.

The Parseval-Plancherel theorem relates the L?(G) norm of a function to the norm of its Fourier coefficients.
Specifically, let f : G — C. Consider the Fourier expansion of f,

dP
flg) = Z Z dp [l Prw (9)

peC kk'=1

Now, consider the L?(G) norm of f,

22 — d 2
1120 / _Aa11(0)

Using the Fourier expansion, we have that

1711226y = / _Aglfa) = / g Yy S (0)(ffe) s

pp’ €G
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Using the orthogonality relations, we have that
/ dg > dpdy fo o (9) (o) i ()T =D 2] 7717
geG A >
pp'€G peG
Ergo,
112y = D dallf*II%
pGG‘

This is known as the Parseval-Plancherel relation on compact groups and relates the function space norm of f to the
Fourier transformation of f.

VII. INDUCED AND RESTRICTED REPRESENTATIONS OF COMPACT GROUPS

We naturally understand that the group of in-plane rotations is a subgroup of the set of all three dimensional
rotations. The Induced and Restricted functors provide a way to generate representations of a subgroup from repre-
sentations of a larger group and vice-versa. This is especially important in physics, where the number of gapless modes
in symmetry breaking can be determined by restriction representations [35]. Similarly, emergent larger symmetries
can be understood by induced representations, due to the universality property (ref).

A. Restricted Representation

Let H C G. Let (p,V) be a representation of G. The restricted representation of (p, V') from G to H is denoted as
Res$[(p, V)]. Intuitively, Res%[(p, V)] can be viewed as (p, V) evaluated on the subgroup H. Specifically,

Vo eV, Resilpl(h)v = p(h)u

Note that the restricted representation and the original representation both live on the same vector space V.

B. Induced Representation

The induction representation is a way to construct representations of a larger group G out of representations of a
subgroup H C G. Let (p, V) be a representation of H. The induced representation of (p, V') from H to G is denoted
as Ind$[(p, V)]. Define the space of functions

F={f|f:G=V, VheH, flgh)=ph")f(g)}

Then the induced representation is defined as (7, F) = Ind%[(p, V)] where the induced action 7 acts on the function
space F via

Vg, €G, VfeF (nlg)- NHg)=rflg™'q)

1. Induced Representation for Finite Groups

There is also an equivalent definition of the induced representation for finite groups that is slightly more intuitive
[9]. Let G be a group and let H C G. The set of left cosets of G/H form a partition of G so that
|G/H|
G= U giH

i=1

where {gi}ﬁ{m are a set of representatives of each unique left coset. Note that the choice of left coset representatives
is not unique. Now, left multiplication by the element g € GG is an automorphism of G. Left multiplication by g € G
must thus permute left cosets of G/H so that

VgeG, g-9i=9j,uhi(9)
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where jg : {1,2,..,m} = {1,2,...,m} € S, is a permutation of left coset representatives. The h;(g) € H is an element
of subgroup H. The map j,(i) and group element h;(g) € H satisfy a compositionality property. Specifically, we have
that
V9,9 € G, Jgodg=1Jgg hi(g'9) = hj,i)(g) - hilg)
which can be seen by acting on the left cosets with g followed by ¢’ versus acting on the left cosets with g’g. Note
that
e gi = gi-e=gj hi(e)

holds so j. = e and h;(e) = e holds. Now, let (p, V) be a representation of the group H. Let us define the vector
space W as

|G/H|
W=D oV
i=1

where the (standard albeit somewhat confusing) notation g;V(;) denotes an independent copy of the vector space V.
This notation is simply a labeling and all copies of ng(g are isomorphic to V¥,

VEgWi Z2gpVh 2. =Zgc/m Ve
so that the space W & @'ﬁ{H'
vector space, (m, W) = Ind$[(p, V)]. The induced action 7 = Ind$ p acts on the vector space W via

V is just |G/H| independent copies of V. The induced representation lives on this

|G/H| |G/H]
VgeG, Yw= > guieW, =(g)-w= > olhi(g)v;,meW
i=1 i=1

where v; € V{;) is in the i-th independent copy of the vector space V. Using the compositionality property of j, and

hi(g), it is easy to see that this is a valid group action so that (m, W) = Ind%[(p, V)] is a valid group representation.
Note that the induced action 7 acts on the vector space W by permuting and left action by the H-representation

p(h).

2. (H C G)-Intertwiners

In order to state a theorem which establishes the universality of the induced representation, we will also consider
another definition of intertwiners between different groups. Let H C G. Let (p, V') be a H-representation. Let (o, W)
be a G-representation. We define the vector space of intertwiners of (p, V) and (o, W) as

Hom g [(p, V),Resg[(a, W={®| ®: VW, st. Yhe H, ®(p(h)v)=0c(h)®(v) }

We say that a linear map ® : V. — W is an (H C G)-intertwiner of the H-representation (p,V) and the G-
representation (o, W) if ® € Homg|[(p, V), Res$[(, W)]]. The induction and restriction operations are adjoint functors
[8]. By the Frobinous reciprocity theorem [3],

Homp[(p, V), Resf[(o, W)]] 2 Homg [Ind§[(p, V)], (0, W)]

and so for every ® : V — W which intertwines (p, V) and Res%[(o, W)] over H there is a unique ®1 : Ind%[V] — W
that intertwines Ind%[(p, V)] and (o, W) over G. Not every H-representation can be realized as the restriction of a
G-representation. Thus, the universe of (H C G)-intertwiners is a proper subset of the universe of H-intertwiners.

(pa V) i} (Ua W)
o0 7o)
(pv V) L) (Ua W)
FIG. 4: Commutative Diagram For (H C G)-intertwiner. ® : V' — W. The map

® € Hompy|(p, V), Res%[(o, W)]] = Homg[Ind$ [(p, V)], (0, W)] if and only if the following diagram is commutative
for all h € H. Note that the group G also has o(g) action on the vector space W.

A map ®:V = Wis a (H C G)-intertwiner if and only if the diagram in VIIB 2 is commutative.
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(p,V) —2 dG(p, V')

L0.3 \ lw

FIG. 5: Commutative Diagram for Uniqueness Property of Induced Representations: The map ¥ :V — W is an
H-equivariant mapping. Using the uniqueness property of induced representations, there is a unique factorization
U =3T®, where ®,:V — Indg V is a H-intertwiner and W7 : Indf[ — W is a G-intertwiner.

8. Universal Property of Induced Representation

A standard result in group theory establishes the following universal property of induced representations, as stated
in [8]:
Theorem 1. Let H C G. Let (p,V) be any H-representation. Let Ind%(p,V) be the induced representation of
(p,V) from H to G. Then, there exists a unique H-equivariant linear map ®, : V. — IndgV such that for any
G-representation (o, W) and any H -equivariant linear map ¥ : V. — W, there is a unique G-equivariant map ¥ :
IndgV — W such that the diagram 5 is commutative.

Let (p,V) be a H-representation and let (o, W) be a G-representation. Let ¥ : V' — W where ¥ is an intertwiner
of a the H-representation and the restriction of the G-representation to an H-representation so that

Vh e H, Wp(h)=Res$[o](h)V

so that ¥ € Hompg[(p, V),Resg(a, W)]. The universal property of the induced representation allows us to write
any such WU in a canonical form. Specifically, as illustrated in Figure VIIB 3, we can always uniquely decompose
U =" o ®, where U' € Homg[Ind% (p, V), (0, W)] and ¥, : V — Ind5V is (o, W) independent.

(p, V) - (o, W)
\‘Pp) V
Ind% (p, vV
(0, V) =2 (0, W) e V)
o) 1§ p](hdundg ollg)  o(h)|o(g)
”””l a(h)lv(g) =
)4 IIldH(p,
(0, V) =2 (0. W) / \
(p,V a,W)

FIG. 6: Factorization Identity for Universal Property of Induced Representations: For every H-intertwiner
U :V — W, there exists a G-intertwiner ®, : V — Ind% V such that the H-intertwiner U1 : Ind% V' — W is unique.

4. A Completeness Property For Induced Representations

Can every function f : G — R® be realized as the induced mapping of functions in R”? We show that this is the
case. We have the following compositional property of induced representations [9]: Let K C H C G. Let (p,V) be
any representation of K. Then,

Ind[(p, V)] = Ind [Indz [(p, V)]

which states that the induced representation of (p, V) from K to G can be constructed by first inducing (p, V') from
K to H and then inducing from H to G. Now, choose K = {e} to be the identity element of G. Let (p, V') be the
trivial one dimensional representation of K = {e} with

dimV =1, ple)v=v
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(o1, W) (o1, W1)
(P1, V) et (02, Wa) (1, V1) (o2, Wa)
(pQ:VQ) ® (U3,W‘3) (P23V2) (O"LW‘;)
(Ps,Vg)_‘: (O’4,W4) (PJ,VS) (O’4,W4)
(pnvvn)_._. . (Pn> Vi)

(Oms W) (Om, W)

FIG. 7: Left: Restricted representation Res% from G to H of G-irreducibles (a;, W;) to H-irreducibles (p;, V;). Not

every H-representation can be realized as the restriction of a G-representation. Right: Induced representation Indg
from H to G of H-irreducibles (p;,V;) to G-irreducibles (o;, W;). Not every H-representation can be realized as the
induction of a H-representation. The restriction and induction operations are adjoint functors. In general, the
restriction and induction operations are generically sparse. This sparsity places restrictions on what irreducibles can
appear in (H C G)-equivariant maps.

Consider the set of left cosets of H in K = {e}. We have that
H/K = H/{e} ={helhe G} = H

so the set of coset representatives of H/K is just elements of H. Using a from [9], the induced representation of (p, V)
from K = {e} to H is the left regular representation of H. By the same argument, the induced representation of
(p, V) from K = {e} to G is the left regular representation of G. Thus,

Indi([(p, V)] = (L,C"),  Wnd§[(p,V)] = (L,C)
Using the compositionality property of the induced representation (?7?), we thus have that
(L,C%) = Indj[(L,C™)]

Thus, the induced representation from H to G of the left regular representation of H is the left regular representation
of G.

(L, CH) nd§ [(L,cH))

(L,CY)
LWJ L(h)JL(g)

Ind§ [(L,cH))

(L,CH) (L,CY)

FIG. 8: Commutative Diagram for Completeness Property of Induced Representations. L; denotes the left regular
action of H on C#. L, denotes the left regular action of G on C%. The induced representation of the left regular

representation of H is the left regular representation of G, (L,C%) = Ind%[(L,CH)]. The induced representation
makes the diagram commutative. This should be contrasted with the definition of G-equivarience defined in 1T A.

Thus, the induction operation maps the space of all group valued functions on H into the space of all group valued
functions on G.

C. Irriducibility and Induced and Restricted Representations

Let H be a subgroup of compact group G. We can use the induced representation to map representations of H
to representations of G and the restricted representation to map representations of GG to representations of H. All
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representations of H break down into direct sums of irreducible representations of H. Similarly, all representations
of G break down into direct sums of irreducible representations of G. Let use denote H as a set of representatives
of all irreducible representations of H and G as a set of representatives of all irreducible representations of G. We
want to understand how the restriction and induction operations transform H-irreducibles to G-irreducibles and vice
versa. We can completely characterize how irreducibles change under the restriction and induction procedures using
branching rules and induction rules, respectively.

1. Restricted Representation and Branching Rules

Let (o, W) and (¢/, W') be G-representations. The restriction operation is linear and
Resgi[(0, W) @ (o', W")] = Res[(0, W)] @ Resf[(o”, W)]

We can study the restriction operation by looking at restrictions of the set of G-irreducibles G. The restriction
of an G-irreducible is not necessarily irreducible in H and will decompose as a direct sum of H-irreducibles. Let
(0,W,) € G. We can define a set of integers B, , : G x H — Z=°,

Res% (o, W) @ B, ,(p, W,
pGH

so that B, , counts the multiplicities of the H-irreducible (p, W,) in the restricted representation of the G-irreducible
(0,Ws). The By, are called branching rules and they have been well studied in the context of particle physics [34].
Let (o/,W') be any G-representation. (¢/, W’) will decompose into G-irreducibles as

= @ mg(O', WO)
oe@

where m, counts the number of copies of the G-irreducible (o, W,,) in (¢, W'). Then, the restriced representation of
(o/,W') decomposes into H-irreducibles as

Res&[(o”, W")] @ me Res$[(o, W) @ Z moBop)(p, W)
oeG peGoe@

So that the multiplicity of the (p, W,) irreducible in the restriction of (¢/, W') is > & Mo Bo,p. Thus, the branching
rules B, , completely determine how an arbitrary G-representation restricts to an H-representation.

2. Induced Representation and Induction Rules

The induction operation acts linearly on representations composed of direct sums of representations. Specifically,
if (p1, V1) and (p2, Vo) are representations of H, then

Ind§[(p1, V1) ® (p2. V2)] = IndG[(p1, V1)] & IndF [(p2, V2)]

The induction operation Indg maps every irreducible representation (p,V,) € Htoa G-representation. The induced
representation of an irreducible representation of H is not necessarily irreducible in GG and will break into irreducibles

in G as
md$[(p, V, @

where the integers I, , : H x G —€ Z2° denotes the number of copies of the irreducible (o, W,) € G in the induced

representation Indfl(p7 V,) of the irreducible (p,V,). The I,, are called Induction Rules and completely determine
the multiplicities of G-irreducibles in the induced representation of any H-representation. Specifically, let (p’, V') be
any representation of H. Then, (p’, V') breaks into H-irreducibles as

= @np(p,V

pEFI
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The induced representation is linear and maps (p’, V') into a representation of G which will break into G-irreducibles

as
IndG (0, V") @nplndH (p,V, @ an 0.0 Wy)

ce@G peH

so that the multiplicity of (o, W,) € G in the induced representation of (p,V,) € H is given by > peit Molpo. Thus,
the induction rules I, , completely determine the multiplicities of G-representations in the 1nduced representation of
any H-representation.

8. Irreducibility and Frobenius Reciprocity

The induction rules I, : H x G — Z2° and the branching rules By, : G x H — Z2° are related by the Frobenius
reciprocity theorem [3]. Let (p’, V') be any H-representation and let (o, W') be any G-representation. Then,

Homp (o', V'), Resi[(o', W')]] = Homg[Ind§[(p', V)], (o', W)

Choosing (', V') = (p,V,) € H and (o', W’) = (0,W,) € G gives I, , = B, ,. So that when viewed as matrices,
B = IT. All information about how H-representations are induced to G-representations and G-representations are
restricted to H-representations is encoded in both B, , and I, ;. It should be noted for many cases of interest, B, ,
and I, , are sparse, and have non-zero entries for only a small number of p and ¢ pairs.

VIII. TENSOR PRODUCT REPRESENTATIONS

The tensor product of two group representations is itself a group representation. Given two representations (p, V)
and (o, W) of a compact group G, their tensor product is defined as a new representation where the group action on
vw €V ®W is defined via:

(p®g)(g) - (vew)=(p(g) v)®@(c(g) - w), forallgeG,veV, weW.

This construction is a systematic way to combine two representations into a single, group representation.

A. Decomposition into Irreducibles

A key property of compact groups is that their representations are fully reducible, meaning any representation,
including a tensor product representation, can be expressed as a direct sum of irreducible representations. Thus, the
tensor product of two representations can always be decomposed as:

P ® g = UPU[® m/‘CUT]Uga’
TEG’

where Uy, is a unitary matrix and mj, are a set of integers that describe how many copies of the irreducible
representation 7 appear in the tensor product p ® o. This decomposition is central to many applications, as it reveals
how the combined system transforms in terms of the simpler irreducible components. The matrix U,,, which describe
the change of basis, are sometimes referred to as Clebsch-Gordon coefficients. These coefficients arise naturally in
the decomposition of tensor product representations, particularly in the context of rotation groups such as SU(2) or
SO(3), which are widely used in quantum mechanics.

1. Ezample: SU(2) Tensor Product Representations

The most important example of tensor products of group representations are SU(2). Specifically, because inde-
pendent particles live in the tensor product space, combining the spins of particles or the orbital and spin angular
momentum of a single particle. For the group SU(2), irreducible representations are labeled by their spin j, which
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can take either integer or half-integer values j = 0, %, 1, %, 2,.... The tensor product of two irreducible representations
labeled by j; and jo decomposes as:
DU @ DU2) =y, @ D(j)]Ung,jz
Jj=lj1—721

where DU) is the irreducible representation of spin j. The Clebsch-Gordon coefficients describe the change of basis
between two natural bases. The basis of the tensor product representation |j1,m1) ® |j2,m2), where my and mqy are
the magnetic quantum numbers. The basis of the irreducible components |j, m), where m = my 4+ mo and j is the
total angular momentum. The relationship is expressed as:

|J7m> = Z C;{%I;j27m2 |j17 m1> ® |j27m2>7
my,msa
where C7™ are the Clebsch-Gordon coefficients. Tables of Clebsch-Gordon coeflicients can be found in [21].

J1,ma;j2,ma

e Maybe good idea to comment on some symmetries and recursions of CG values?

B. Computational Complexity of Tensor products

e Write a section here on the computational complexity of computing the tensor product see [22] for inspiration

IX. IRREDUCIBLE REPRESENTATIONS OF THE SYMMETRIC GROUP

The symmetric group on n elements, denoted as Sy, is the set of bijections from the set {1, 2,...,n} into itself. The
size of the symmetric group |S,| = n! ~ exp(—n)n™ which grows super-exponentially in n.

A. Symmetric Group Representations
The fundamental (or matrix) representation of S, is the n x n representation

Flo) = 1if i = o(5)

0 else

The fundamental representation is not in general irreducible. To see this, note that the subspace spanned by the sum
of the Euclidean basis vectors is an invariant subspace. Specifically, we have that

Yo € Sy, F(a)[i e = ieg(i) = iei
i=1 i=1 i=1

Irreducible Representations of S,, are particularly elegant [7]. A classic result in group theory states that irreducible
representations of S;, are indexed by partitions of n. Specifically, for every partition A - n there is a unique irreducible
representation of S;,. The structure of irreducible representations of S,, can be understood with the help of Specht
Modules. In order to work with Specht Modules, we introduce Young diagrams and Young tableau.

B. Young Diagrams and Young Tableau

Young diagrams are combinatorial tools used in the study of symmetric groups. They provide a visual way to
describe partitions of integers and play a central role in understanding irreducible representations. A Young diagram
is a collection of boxes arranged in left-aligned rows, where the number of boxes in each row corresponds to the parts
of a partition A = (A1, Ag, ..., \;) of a positive integer n. A partition A satisfies:

k
AMZX =2 0>0, and Y Ai=n
i=1
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Here, A F n indicates that A is a partition of n. For example, the partition A = (4,2,1) F 7 corresponds to the Young
diagram:

For the symmetric group S, irreducible representations correspond to partitions of n. Young diagrams provide a
convenient way to label and study these representations. Young diagrams help describe the branching rules when
restricting representations of S, to S,,_1. A standard Young tableau is a Young diagram where the boxes are
filled with integers 1,2,...,n, such that the numbers increase along each row and the numbers increase down each
column. For example, a standard Young tableau for A = (3,2) F 5 is:

1]2]3]
4
The number of standard Young tableaux of shape X is given by the hook-length formula [19], which is central in the

representation theory of symmetric groups.

C. Specht Modules

Specht modules provide a general method for constructing the explict irreducible representations of S,,. Let A =
(A1, A2, ..., Am) F n be a partition of n with Ay < Ay < ... < \,,. To each permutation A\| — A, we associate a Young
diagram ?7. Once we have a Young tableau, we then define the following subgroups of .S,,,

1234|5\

10

1
4
7

8]

FIG. 9: Canonical Young Tableau: The partition A = (4,2,2) - 8. The associated canonical Young Tableau \is
shown in

Py, = {g € Sy|g preserves the rows of the A-tableau}
Qx = {g € S,|g preserves the columns of the A-tableau}

Note that P\ C S, and Q) C S, holds, as compositions of elements which preserve rows (or columns) also preserve
rows (or columns). To each of these subgroups we defined the group algebra elements

A= Y9 a= ) sign(g)g
gEPN gEQ N

The sub-algebra V) = C[S,|pagx forms an irreducible representation of S,,. The dimension of an irreducible of S, can
be calculated using the hook length formula, [19].

1. Schur Polynomials and Symmetric Functions

As an aside, Young diagrams are closely related to symmetric functions, particularly Schur functions, which play
a significant role in algebraic combinatorics. The Schur function sy associated with a partition A is defined combi-
natorially using the tableaux corresponding to A. The Schur function can be expressed as a determinant involving
complete homogeneous symmetric polynomials hy:

sa(w1, 2y ..., xpn) = det (h,\i,i+j)197jgn
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where hy is the complete homogeneous symmetric polynomial of degree k. The Shur functions have many elegant
properties,

Symmetry:Vo € S,,, SA(Z‘l, X9, ...y Jﬁn) = S)\(.Tg(l), Ty (2)) oo .’Ifg(n))

Completeness: The Schur polynomials are a complete basis for all symmetric polynomials

Tensorality:sy (21, T2, ..., Tn) - SA(T1, T2, ooy Tp) = E CI;\’uS,\(xl, Za, ..., Tn) for Littlewood-Richardson constants S
v

D. Hook Length Formula

The dimension of an irreducible representation of .S,, corresponding to a partition A can be calculated using the
hook length formula [19]. Specifically, let

)‘:(Ah)‘%"'v)‘m)'_nv

where \ is a partition of n, and A; are the parts of the partition, satisfying Ay > Ao > -+ > X, > 0and > .0 A\, = n.

To compute the dimension of the irreducible representation V), construct the Young diagram of the partition .
The Young diagram is a collection of boxes arranged in rows, where the i-th row has \; boxes. For each box in the
Young diagram, its hook length is defined as the number of boxes directly to the right, directly below, or in the same
position, including the box itself. Denote the hook length of a box (4, 7) in the diagram as h(¢, 7). The dimension of
V) is then given by:

n!

H(i,j)e/\ h(i’j)

where the product runs over all boxes (4, 7) in the Young diagram of A.

dim(Vy) = (4)

E. Example: Symmetric Group Si

As an example, consider the symmetric group Sy. One possible partition of 4 is A = (2,2) F 4, which corresponds
to the Young diagram:

Using the hook length formula:

4] 24

dm(Vy) =5 575"

This means the irreducible representation corresponding to the partition A = (2,2) - 4 of Sy has dimension 2.

F. Tensor Products of Irreducible Representations of S,

Let A and X be two irreducible representations of S,,, the tensor product of the corresponding irriducibles repre-
sentation will decompose into irriducibles as

Va® Vi = U)\)\/[Z C;/\/VT]U;\LN
THn

where Uy is a unitary change of basis. The integers cJ,, are called the Littlewood-Richardson coefficients and count
the number of irreducible 7-representations in the tensor product of A\ and X. The tensor product coefficients 7,
are generically sparse and the relation

C;)\’ >0 = |d,\—d)\/‘ <d, <dy+dy

holds [19]. Tensor product decomposition’s can be computed diagrammatically using the Littlewood-Richerdson rule.
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Hlo[em-1

FIG. 10: Diagrammatic Computation of Tensor Products of Young Tableau: The partition A = (4,2,2) - 8. The
associated canonical Young Tableau A is shown in ...

1. Littlewood—Richardson Rule for Tensor Products in Representations of Symmetric Groups

The Littlewood—Richardson rule is a combinatorial method for determining the multiplicities of irreducible rep-
resentations within the tensor product of two irreducible representations of the symmetric group S,. Given two
irreducible representations of \S,,, corresponding to partitions A and u, their tensor product can be decomposed into
a direct sum of irreducible representations:

VeVt =&,V (5)

Here, V*, V#, and V" are irreducible representations associated with partitions ), y, and v, respectively, and S
are non-negative integers known as Littlewood—Richardson coefficients. The Littlewood—Richardson rule provides a
combinatorial procedure to compute the coefficients c¥ - It involves counting the number of semistandard Young
tableaux of shape v/ (the skew Young diagram obtained by removing the boxes of A from v) and weight p that
satisfy specific conditions. Specifically, the entries in the tableau must be weakly increasing across each row, strictly
increasing down each column. and form a reverse lattice word when read from right to left and top to bottom; that is,
in any initial segment of this reading, each integer i appears at least as many times as the integer ¢ + 1. The number
of such tableaux equals the Littlewood-Richardson coeflicient c§ e

G. Example: Tensor product of two S3 Irriducibles Representations.

Consider the partitions A = (2) and p = (1) of S3. The possible partitions v of 3 are (3), (2,1), and (1,1,1). To
compute c%t)l), we examine the skew shape (2,1)/(2), which is a single box. A semistandard Young tableau of this

shape with weight (1) is:

n _

This tableau satisfies the conditions of the Littlewood—Richardson rule, so 0533(1) = 1. Similarly, one can compute

(G) (1,1,1) _
C2)1) = 1 and Cy) = 0.

H. Irreducible Decomposition of Tensor Product of N Identical Vector Spaces

Let V be a vector space over R or C. In many linear algebra applications, we often work with a vector space W
that is composed of k-fold tensor products of the smaller vector space V' such that

W=V®—-vVeVe.oV
N———’

k—times

where the dimension of the vector space V is d, dimV = d so that the dimension of W is dimW = d*. This
situation arises naturally in dealing with quantum mechanical systems of many identical particles. Tensor product
representations of this form are naturally related to the permutation group. Specifically, let W :AV®’“ be a vector
space that is the k-fold tensor product of V. For each permutation o € Sy, we define the operator S, with action on
the tensor product basis via permutation

Vo € Sk, 50|ili2...ik> = |ia(1)io(2)-~ia(k)>
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The operators S, form a unitary reducible representation of the group 5,,. Specifically, the permutation representation
will decompose as

(S, VER) = P ey A
A=k

with CE\k 4 counting the muplicity of the irreducible A representation in (S, V®F). The character of the (S,, VEF)
representation is given by

x(o) = TI[S'U] =d/?)

where f(o) is the number of fixed points of the permutation . Thus,

Ci\k,d) = Z X/\(O')df(a)

gESk

where xx(0) : Sk — C is the character of the A irreducible. Suppose that the matrix X commutes with all N-fold
products of unitary matrices

YU € G, USNX = XU®N
holds, where G is either O(d) or U(d). Then the matrix X may be written as
X = Z cUS}
oc€Sk

for some complex constants c,. There are N! constants c,, one for each permutation o in Sy. A set of N! linear
equations for the coefficients ¢, can be computed by multiplication by an element S;,7 € Sy and taking traces [25].

1. Example: N =2 Case

For N =2, Sy & Z, is isomorphic to the cyclic group of order two. There are two permutation operators, 1 and S.
The operator S permutes tensor product indices with S|ij) = |ji). Note that

S§2=1

Thus, S has eigenvalues +1. All representations of Sy are one dimensional. There are two irreducible representations,
the trivial and sign representation. The tensor product space then decomposes as

VeV = [Ld; Yy @[Ldz_ Yy

so that the tensor permutation space decomposes into d(d; )

anti-symmetric space. The projection operators into the V; and V_ subspaces are given by

copies of the symmetric space and @ copies of the

- %(jwlxd +8) S = %(jmlxd - 5)

respectively. The projection operators are normalized to satisfy the relations S’i =5, Using Young diagrams, the
irreducible representations are representation as the partitions A - 2, as shown in 11.

ViV =[1]2] Vo=Voy=

FIG. 11: Irreducible Representations of Sy and corresponding Young Diagrams

S
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FIG. 12: Under the group restriction operation of Sy to Sy x S, The five irreducible representations A - 4 of Sy
decompose into direct sums of tensor products of Sy irreducible representations.

Character Table of Irreducible Representations of Sy
Character ‘e,(sizezl)‘(12),(size:6) (12)(34),(size=3) | (123),(size=8) | (1234), (size=6)
X(4) 1 1 1 1 1
X(1,1,1,1) 1 -1 1 -1 1
X(2,2) 2 0 2 -1 0
X(2,1,1) 3 1 -1 0 -1
X(3,1) 3 -1 -1 0 1

TABLE I: Character Table of Sy for irreducible representations A + 4.

2. Ezxample: Tensor Product Rules of S2

The tensor product rules for the group Sy are trivial. Using characters, we have that
V+®V+:V+, V+®V7:V7, V7®V7:V+

so that C’j_"” =1, ¢t =Cct =1, C7™ =1 and all other tensor product multiplicities are zero.

3. Ezample: Computing Branching and Induction Rules of So x Sa C Sy

There are five irreducible representations of S4. The character table of irriducibles of Sy. The group Sy has five
conjugacy classes.
Evaluated on the Sy x Ss subgroup, we have that

xwle)e)) =1, x@lA2)(e)] =1, xwle)B3H] =1, x@[(12)(34)] =1

X(1,1,1,1) [( )(e )] 1, 1,1,1,1)[(12)(6)] -1, X(1,1,1,1)[(€)(34)] =-1, X(1,1,1,1)[(12)(34)] =
Xe2le)(e)] =2, xe2[(12)(e)] =0, xexle)12)]=0, x@2I[(12)(12)] =2
X(2,1,1)[( e)(e)] =3, X(2,1 1)[(12)( e)] =1, X(2,1 1)[(6)(12)] =1, X(2,1,1)[(12)(12)] =1,
xaple)e)] =3, xanl12)(e)] = -1, x@nle)12)] =1, x@sp[(12)(12)] = —1,

Upon restriction to the subgroup Ss x Sy we have the following decomposition of Sy irreducible representations,

V4) - Vi@V, ‘/'(1717171) - V_eV_,, V(272) - (VieV)e (Voo V)
Vi = (VaeVo)e(VaeVo)e(VeeVy), Veny—(VeeVo)e(VaeVo)e (Voo VL)
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2[3]

1121314 11213
Meafals) APl plels)

’U\|>-l> =

[on] e ]eo] =

FIG. 13: The seven integer partitions of five. Each partition A I 5 is in bijective correspondence with a irreducible
representation of Ss. The dimensions of the corresponding irreducible representation A going from left to right are:
1,1,4,4,55,6

This is shown diagrammatically in 13. Thus, the only non-zero branching rules are given by

++ _ -— ++ _pg—— _—
Bay =1 Buiin =1 Baa =By =1
—— _pt- _p—+ _ ++ _p+t- _p—+ _
B(3,1) - B(3,1) - B(3,1) =1, B(2,1,1,1) = B(2,1,1) = B(2,1,1) =1
X. SCHUR-WEYL DUALITY
Schur-Weyl Duality is a powerful tool in the representation theory of compact groups [30]. In the literature there

is some ambiguity as to the actual definition of what Schur-Weyl duality entails. Schur-Weyl Duality is sometimes
referred to as the decomposition of the tensor products classical Lie groups. However, Schur-Weyl is actually a
more general idea that can be used to decompose any k-fold tensor product of a representation of a compact group.
Specifically, the k-fold tensor product of a representation of a compact group G forms a representation of both the
group G and the group G x Si. Using the representation theory of the symmetric group IX, we can decompose the
k-fold tensor product into representation of G and representations of Sg.

A. General Schur-Weyl Duality

Let G be a compact group. Let (p, V,) be any representation of G. Consider the k-fold tensor product representation,
(p®F, Vp®k). This representation also forms a representation of the symmetric group of order k, as

Vo € Sk, Vg€ G, S5 [plg) ®p(g) ®...® p(g)] = [p(g9) ® p(g) ® ... @ p(g)] S

k—times k—times

so that the G action and S} action are commutative.

Rk
Vp®k p—(g)> Vp®k
02" (g)

Vp@k LA CIAN Vp@k

FIG. 14: ‘Square’-type commutative diagram for Schur-Weyl duality. The key observation in Schur-Weyl duality is
that the k-fold tensor product action and the tensor permutation representation are commutative. This allows for

definition of G x Sy action on the vector space Vp@”C . Because of this, (H’;, Vp®k) forms a representation of the group
G x Sk
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Let us define the action H’; on the vector space Vp®k as the following

d d d
k k
Vg € G, Vo € S, Vwilizmik € Vp® ) Hp(-g’ Wiyiy...i Z Z Z 10(1)J1p(g)za(2)J2 p(g)la(k)kajljz Jk

Note that this action is well defined and can be performed by matrix multiplication followed by permutation or
permutation followed by matrix multiplication. For this reason, (H’;, V®k) is a well defined representation of the group

G x Sj. The representation (H’;, Vp®k ) is in general not reducible and will decompose into irreducible representations
of G x Sj. Irreducible representations of G x Sy are tensor products of irreducible representations of G and irreducible
representations of Si. Thus, we have the following decomposition,

(15, VER) =2 B @ mh ™ (7, Vi) @ (A, V)

reG Ark

where m™ are integers counting the number of copies of the (7,V;) ® (X, Vi) irreducible in (IIF, V). Thus, the
tensor product space decomposes into vector subspaces that are characterized by their transformation properties based
on G action and tensor index permutations.

B. Unitary Schur-Weyl Duality

Let us apply the more general Schur-Weyl formalism to the case of the unitary group U(d). Irreducible repre-
sentations of U(d) are countably infinite and are in one-to-one correspondence with integer partitions [30, 34]. Let
A = (A, A2, ..., Am) be a partition with Ay > Ay > ... > A,,. The irreducible representation of U(d) associated to the
partition A will be denoted as (Uy, V3). Let (U, C?%) be the fundamental d-dimensional representation of U(d) defined
as the A = (1) partition,

Us={U | UU=1,=U00"}
Consider the k-fold tensor product decomposition,
D vien

(k. d)

where A - (k, d) denotes partitions of the integer k with no more than d summands, i.e.
AR (kd) = A=A A20Am), StA > X > 2 A st 3 N =kandm<d

A celebrated theorem of Weyl [30] states that the representations (Uy,Vy) exhaust all representations of the d-
dimensional unitary group U(d).

1. Unitary Group Tensor Product Rules

For a complete discussion of diagrammatic methods for computing tensor products of irreducible representations of
the unitary group, please see [12]. We will be interested in tensor products of irreducible representations of U(d). Let
A and X be two partitions. Let V) and V) be the corresponding irreducible representations of U(d). Then, consider
the tensor product

Ve Vv =@ P mi, v

n=1 ukn

so that the index p ranges over all integer partitions and mY,, are integers that count the muplicity of the irreducible
representation V, in the tensor product V\ ® Vy/. Using Schur-Weyl Duality, we can derive an exact expression for
tensor product rules mk,, of the unitary group in terms of the branching rules of the symmetric group. To begin,
consider the trivial relation

(Cd)®k (Cd)®k’ (Cd)®(k+k )
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for any integers k and k’. Then, using the vector space decomposition in the Schur-Weyl duality, we have an
isomorphism of vector spaces

[P weNel @ weX=l @ V.o

A (k,d) NE(K ,d) pk (k4K ,d)

(ch* (CH¥ (CHrtr

This is a representation of the group U(d) x S x Si. Expanding out the tensor product of the left hand side, we

have that
B P mewnleeaN)= B H mhLV.e(aN)

A-(eyd) Nk, d) o AR (k,d) MF (k' ,d)

Now, consider the group restriction of the left side from Sy to the subgroup Sy x Sir C Sgyrr. Let u b (k+ k') be
a irreducible representation of Siix/. Under the group restriction

S ’ /
Resgy s, 1l = €D €D B (Ao X)
ARk N EE!

where B;}X are the branching rules which count how many copies of the irreducible A ® X' are contained in the
restriction of u. Branching rules for the symmetric group have been thoroughly studied [19]. Under group restriction
from Skix — Sk X Sy, the isomorphism of vector spaces becomes an isomorphism of group representations. Under

restriction
D vien— P PP BLvieirer

pk (k4K d) bk (k+k ,d) THE T/FR

Two representations are equivalent if and only if they have identical decomposition of irriducibles. This relation can
only hold if, for any A - &k and X' F &k’ the relation

nwew= @ BV
uk(k+k")

holds. Thus, the tensor product of the A and )\ irreducibles of U(d) are completely determined by the branching rules
of irreducible representations of the symmetric group. Branching rules of the symmetric group have been thoroughly
studied in representation theory [19].

XI. CHARACTERIZATION OF LIE ALGEBRA REPRESENTATIONS

The continuous structure of Lie groups allows for classification of their algebraic structure. In this section, we
discuss the Killing form, Cartan sub-algebra and Weyl group/chamber. The Weyl group and Weyl chambers encode
the symmetry of the root system, which is instrumental in understanding the geometry and representation theory
of the group. The Weyl integration formula and the Harish-Chandra integral formula provide powerful tools for
integrating functions over the group, linking harmonic analysis to representation theory. Using Dynkin diagrams, all
compact Lie algebras can be classified into a finite list of types, giving a complete understanding of their structure
and symmetries.

A. Killing Form

The Killing form is the first tool in the classification of Lie algebra representations. The Killing form K is a
symmetric bi-linear form on a Lie algebra g. Specifically, K is defined as

K(X,Y) = Tr[ad(X)ad(Y)]
Using the cyclic properties of the trace,

K(X,[2,Y]) + K([Z,X],Y) =0 (6)
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The Killing form is essentially unique. It is (up to multiplication) the only inner product satisfying the property 6.

The Killing form can be written in terms of the structure constants Z’j as

KX, BIX;) = 3 f fhaip)
k

So that as an element of g* ® g* the Killing form is given by

K= fifjie®d
km=1
where g* = span|e’]_; is the dual space of g. Importantly, the Killing form is an Ad-invariant inner product,

Vge @, K(X,Y)=K(Ad,X,Ad,Y)

B. Cartan Sub-Algebra

A Cartan sub-algebra b is a maximal commuting set of elements of g. A Cartan sub-algebra is closed under
commutation and satisfies

Vz,yehb, [r,y]=0

The dimensions of dim h = r is called the rank of g. Let {h'}"_; be a basis of . The remaining elements of g will be
denoted as E* where

Vhebh, [h E*]=a'E"

so that the E< are eigenvectors of the h' operators. The vectors a = (al,a?,...,a") are called roots. The operator
E“ is called the ladder operator associated to the root «. Let ® denote all the roots of g. The Lie algebra g then
decomposes as a direct sum of the Cartan sub-algebra and the roots

g=bEpE"

acd

Root systems have a reflection symmetry. Specifically, if « is a root, then —a is also a root as
[n',E%) = o'B* = [0, (E*)1] = —a'(E*)!
Using the Jacobi Identity, we have that
vheb, [W,[EY E’] = (a+B)ETP

thus, the commutator of two roots satisfies

[E,EP) = NogE*"F if a # -8

[EY B~ = Z Ci(a)h’

i=1
where N, g and C;(«) are constants. The constant C;(a) can be determined using the Jacobi relation. We have that
(W', [E*, E~*]] + [E*,[E~* h']] + [E~*,[h',E*]] =0
Using the definition of roots, we have that
(W', [E*,E~*]] +2d'[E*,E~*] =0

Thus, [E¥, E~%] must be given by

[EY,E~%] =C(a) Zo/hi
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The root «(h) : h — C is the eigenvector of x in [h,-]. Note that each root a : h — C can be viewed as an element of
the dual space h* of h. An orientation on a root system « is a choice of roots @+ C ® such that either o or —« is
contained in ®T, but not both. If the Lie algebra g has an inner product, we can identify h* with . We can identify
the dual h* with h via the canonical isomorphism J : h* — §

Jzl(y) = K(z,y)

where K (-, ) is the Killing form on g. The Killing form induces a inner product on the root space. Let o and 5 be
roots. We can then define the inner product on roots

(a,8) = K()_a'h',> k) =Y a'p’
i=1 i=1 i=1
The Killing form then defines a inner product in the dual space h* via

(., ) = K(a-h,3-h)

C. Weights

A weight vector A = (AL, \2,...,\") is a basis such that
VhiE, AU = AN
Using the commutation relations [hf, E%] = o' E®, we have that
REIN)] = (X + ) [B°|0)]
so that the operator E“ shifts the weight vector A,
EY\) o« |A+ a)
The operator E® is said to terminate the weight vector A is there exists an integer p € Z such that
(BYIN) =0

For finite representations, all the root operators E® must terminate each weight vector |\). Thus, we must have that

|af?

This is called the Cartan relation. The Cartan relation forces the root and weight space to satisfy a set of natural
geometric relations, allowing for a complete classification of simple Lie algebras.

D. Structures of Root Systems

The rank of the Cartan sub-algebra h is in general much less than the dimension of the full Lie algebra g. Let
{Bi}7_, be a basis of h*. Then, any root may be expanded as

Yo € b, a= inzﬂz
=1

where n; are integers. Roots with the first non-zero n; > 0 are called positive roots and denoted as ®,. A simple
root is a root that cannot be written as the sum of two positive roots. The set of simple roots is denoted as A. There
are exactly r simple roots. For any two simple roots, we define the Cartan matrix

To each root a € ®, we associate a dual root o, defined as

A 2a
o

Using this definition, the Cartan matrix can be written as

Aij = (i, o)

(67
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1.  Fundamental Weights

The fundamental weights are defined as the normalized coroots with
(Wi ) = 0y

Any weight vector can be expanded in the fundamental weight basis as

A= i )\iwi
i=1

where \; = (A, af) are called the Dynkin labels of A\. The Weyl vector p is defined as the sum of all fundamental
weights

T
=3
=1

E. Weyl Group

Consider the hyperplane defined by the equation
Ho={h] (a,h)>0}

For any root @ € ®, we can reflect around the hyperplane defined by H,. The set of all reflections forms a group.
Which is called the Weyl group W. Specifically, for any two roots # and «, the Weyl reflection of § with respect to
« is given by

saff =B~ (a", Bl
Because roots and weights live in the same space, the Weyl group also acts on weight vectors |A) via
salA) = [A) = (@, A)a)
The Weyl group action on both weights and roots is unitary,

Roots: Yw € W, Va,a' € @ (a,d) = (wa,wa’)
Weights: Vw € W, (A, \) = (wA, w\')

It will be useful to define the Fredenhall operator D, as

D,= ][] (exp(a/2) - exp(~a/2))

acedt

using the definition of the Weyl group, this can be written in terms of the Weyl vector as

D,= > n(w)exp(wp)

weWw

where n(w) : W — £1 is the sign function of W.

F. Weyl Chamber
The action of the Weyl group W on the root space splits the root space into |W| isomorphic subspaces called
chambers. The Weyl chamber defined as
We={A|YweW, Yoy €A (wA ;) >0}
The discriminant function d4(z) : h — C is defined as
Ve eh, d4(x)= H (v, )
aedt

which is the products of the inner product of the Cartan elementz € h with all positive roots.
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G. Highest Weight Representations

A highest weight vector |\) is a weight that is decimated by each positive root,
Va e @t E%\) =0

There is a bijection between highest weight representations and irreducible Lie algebra representations. Specifically,
from a highest weight vector |\), we can form the descendent states

Vo € dT, E-ME  E~%m|))

Descent states form representations of the Lie algebra g. The set of all descendent states of the highest weight vector
|A) is denoted as L.
The descendent states Ly generate representation of the Lie algebra G. Specifically,

Cartan Subgroup: exp(z 0;h%)|\) = exp(z O N\
i=1 i=1

Lie Algebra: exp(tE®)|\') € Ly

Thus, highest weight states generate representations of Lie groups. However, we have to keep track of both the
multiplicities of the states in Ly and be able to generate a basis for L. Define the formal exponential exp(u) as a
placeholder, where for all weights A\ and \/,

exp(A + \') = exp(A) exp())

exp(A)(N) = exp((A, X))
The character of the highest weight representation |A) is then defined as

XA = Z Multy [\] exp()\)

NELy

where the integer Multy[\] counties the number of copies of the descendent state |\) in the |A) highest weight
representation. In general, calculating the Lie algebra characters is difficult. However, it can be show that the
Freudenthal operator satisfies

Dyxx = Dpia
Thus, we have that
D p+A
- 7
=7 (7)
This 7 is called the Weyl character formula. Using 7, the dimension of a highest weight representation |\) is given by
A
dy =dima= ] LEAe)
wers  (Pa)

XII. HARMONIC ANALYSIS ON SEMI-SIMPLE LIE GROUPS
Just as Fourier analysis can be generalized to non-commutative harmonic using representation theory, additional
results can be proven when working with semi-simple Lie groups.

e | wonder if there is a way to apply this to machine learning. Specifically, if I have a convolution on a group can
I evaluate it quickly using on of these integral formulae?

XIII. WEYL INTEGRATION FORMULA

Heuristically, the Weyl formula allows one to evaluate integrals on compact non-commutative groups in terms of
integrals over the largest commutative subgroup of G. This reduction is particularly useful in simplifying computations
involving characters and representations.
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A. Statement of the Formula

Let G be a compact connected Lie group, and let T' be a maximal torus in G. The Weyl Integration Formula
states that for any continuous class function f : G — C, the integral of f over G with respect to the normalized Haar
measure dg can be expressed as:

1 :
L@ = [ s 1awPa

Here, |WW| denotes the order of the Weyl group W = N¢(T)/T, where Ng(T) is the normalizer of T in G. A(t) is
the Weyl denominator, defined as:

At) = H (ea(t)/2 _ e—(x(t)/Q)
a>0

where the product runs over the positive roots « of the Lie algebra of GG relative to T'. This function encapsulates the
contribution of the root system to the integration measure.

B. Weyl Integration Formula in SO(3)
We briefly review the Weyl Integration formula in SO(3)[? ]. Let f : SO(3) — C be a complex valued function on
SO(3) that is normal with f(hgh™!) = f(g) for all h,g € SO(3). The Weyl formula in SO(3) states that

2m

/ dg f(g) = [ do [1— cos(d)]f(gs)
geSO(3) 0

where g, is a rotation of angle ¢ about the z-axis. Thus, using the Weyl Integration Formula in SO(3) in 7?7, we have
that

’ 1

e [ 40 11— cos(@hlotae) 1o, DX’ ae)

Now, the characters of SO(3) representations are given by
‘

sin((¢ + 1)9) _ Z exp(ike)

0 —
X (gd’) - Sln(%(b) =,

and the character of the ¢-th SO(3) irreducible evaluated on a rotation of angle ¢ about the z-axis is the Dirichlet
kernel of order ¢ evaluated at ¢.

C. Weyl Integration Formula in SO(n)

We use the Weyl Integration formula in SO(n) [? ], which states that

1 . -1 -1
flg dgzi/ f(diag(ti, ... tn,ty, ... 1
/so(zn) @) 2n=1(n!) J1n ( ( ! ))

< [T LIt = t51%1ts — 5117} dta - - - dt,

1<j

and for the odd case

1 ) _ _
/ f(g)dg:W/ f(diag(te, ... ta, 1,600 ot )
SO(2n+1) n: Jn
< [T {1t = t51P 1t — 5 P [ [ 1ts — 117 dta - - dt,
i

i<j
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where T™ is the n-dimensional torus, and each ¢; is a complex number of modulus 1.
In the case of 2n = 4, we have

. , 09—
[t1 — to]? = |e¥ — |2 =2 — 2cos(f — ¢) = 4sin? (2(;5) ,

i ) 0
|t1 — t51|2 — |ele _ e—wﬁ‘Q =92 - 2COS(9 + ¢) — 4Sin2 (';fls) '
Applying them to the 2n case, we have

- 1 27 27 ) 9_¢ ] 9+¢
Lo fdn = [ [ sto0 st (252 ) s (52 [ anao 0

Now, the characters of SO(4) representations are given by

<2j1+1)<9+¢)) sin (<2j2+1>(0—¢>)
0+¢ 0—¢ (9)
sin < ) sin ( )

where j; and j» are the angular momentum quantum numbers associated with the first and second SU(2) factors.

SO(4) (9 ¢) _ S111 (

(41,52)

XIV. HARISH-CHANDRA INTEGRAL FORMULA

The Harish-Chandra integrals were discovered by Harish-Chandra in his development of the theory of harmonic
analysis on semi-simple Lie groups. The HCIZ integrals [18] are a special case of the more general Harish-Chandra
formula. Let G be a semi-simple group. Let Ad : G — Aut(g) be the adjoint operator on G. Let W be the Weyl group
of G. Let (-,-) : g x g = C be any Ad-invariant inner product on g. Then, the Harish-Chandra formula evaluates
integrals of the form

/ dg exp({Ady(x),v))
geG

in terms of summations over the the Weyl group W. Speciﬁcally7

/gegdg exp((Ad, (), 1)) = v1 j 3 sentu)expl{u(e). )

O

where w(x) is the lattice vector of  on W and sign : W — =£1 is the sign function.

XV. BOCHNER THEOREMS

Bochner’s theorem is a celebrated result in harmonic analysis [3, 13]. Modifications of Bochner’s theorem have been
used in high dimensional statistics and dimensionality reduction [1, 27]. The Bochner theorem on abelian groups was
used in [27] to construct the Fourier random features. We review Bochner theorem on abelian groups, as stated in

A. Bochner’s Theorem on Abelian Groups

Let G be an Abelian group. All irreducible representations of G' are one dimensional. The set of irreducible
representations of G, denoted as G, is again a group. The set of irreducible representations of the dual group G is

isomorphic to G, so that G = G This observation forms the basis of Pontryagin duality [26]. Bochner’s theorem on
abelian groups states the following: Let G be locally compact abelian group. Let f : G — R be a normalized function
on G, ngG dg f(g) = 1 which is positive definite, so that

k

v913927 gk € Ga vvlav% Vg € C Z f(g;lgj),l_}ivj >0
ij=1
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Then, there exists a probability measure duy on the dual group G such that

fo) = [ dugte) w0

g€

Thus, normalized functions on G have positive definite measure on the the Pontryagin dual G. Any positive definite
normalized left-invariant function f(g1,g2) = f(hg1, hg2) can then be written as

Fg1.02) = Flgrtgn.e) = / dus(w) wlgigs) = / () el et)

weG G

Then, using the positively of the measure dps(w), we can write this as

flg1,92) = f(95 91, €) = oy [w(gs w(g1)]

which is the random features expansion for f(,-). Because of this, random features for kernels can be constructed by

sampling from the probability measure py on G. This observation was used in [27] to construct the random Fourier
features, and is the basis of all random features methods. However, this version XV A of Bochner’s theorem only
holds for functions f defined on a abelian group G. What if we have a function f that is defined on a homogeneous
space X = G/H of a non-commutative group G? This is not an academic question: The softmax kernel in attention
is defined on R? which is a homogeneous space of the non-commutative group F(d) = O(d) x R%. Can we develop a
analogy for Bochner’s theorem on homogeneous spaces of non-commutative groups?

B. Bochner’s Theorem on Compact Groups

Bochner proved an additional related theorem for compact groups [2]. Specifically, let G be a compact group, not
necessarily non-commutative. Let f : G x G — C be a left G-invariant f(g1,92) = f(hg1, hga), positive definite
function on G that satisfies following property:

k

Vo1, v2,...; vk € C, V91,92, ..,9n € G, Z v;0; f(9i,9;) 2 0 (10)
ij=1

Consider the Fourier expansion of f,

Flg1:92) = 195 " gr.€) = > d,Tr[f7p(g7 " g2)]

geé

Then, Bochner’s theorem [2] states that each of the matrix expansion coefficients f" are positive definite, f" = 0.

1. Non-Commutative Random Features

We can use Bochner’s theorem [2] on compact groups to construct random features approximations. Specifically,
Each of the f" matrices can be diagonlized as fp = UPAP(UP)T where A? is a diagonal matrix with positive semi-
definite entries. Bochners theorem on compact groups allows us to write positive definite functions on compact groups
as expectations of random features. Specifically, suppose that f : G x G — R is a normalized left G-invariant positive
definite function satisfying 10. Then, using Bochner’s theorem on compact groups, we may write

fla1,92) = f(g5 " g1,€) = Y d,T[UPA*(U”) p(g7 " g2)]
pEQ
Thus, we may write

Flgs gr,e) =D dyTe[p(g))UP A (U?) (g5 )]
peé
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If we define a set of d, vectors, each of dimension d, with

dp
Vije{1,2,....d,}, ®0(g); =\/d, K> UL p(9)k;
k=1

Then, we have that

dp
flgr.g2) =D Y @0 (g)" @ (g)

peG i=1
Thus, the positivity of fp guaranteed by Bochner’s theorem allows for a random features expansion of any positive

definite function on compact groups. On compact groups we don’t even need random features. Specifically, we can
define the deterministic vector

®(g) = Concat . s[Concati<m<a,[v/d, KPUS, p(9)]]
then,
V1,92 € G, K(g1,92) = ®(91)" ®(g2)

holds exactly. For compact Lie groups, this sum will be infinite and must be truncated at some maximum harmonic
2

d,<e
Dy(g) = Concatpeé [Concati<m<a, [/ dpKPUL, p(9)]]

The error in this truncation is highly controlled. Specifically, using the Parsifal-Plancheral theorem VI C,

K = @@l oy = Y. d2IK?|[%
p€G,d,>1

so the validity of the approximation is determined by how quickly the Fourier coefficients K* decay to zero.

2. Ezample: Non-Commutative Random Features on G

Let o € G be an irreducible representation. Consider the F-norm kernel of the o representation,
Ko(g1.92) = llo(91) — o(92)||%
The Fourier coefficients are given by
Kf =6PK 1y,

where K? € R*. For this choice of kernel function, the Fourier matrix K. P is proportional to the identity when p = o
and zero otherwise. The random features decomposition is then

Vge G, O5(g)i = /dpd5o(9)iw
where the index w € {1,2,...,d,} is chosen uniformly at random. Note that, independent of the random variable w,

dp

Vh,g€ G, @(h-g)i=>_ p(h)i;®h(g);
J=1

so that independent of the random variable w, ®” (g); transforms in the p representation of G.
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C. Bochner’s Theorem on Homogeneous Spaces of Compact Groups

The results of XV B can be easily generalized to homogeneous spaces of compact groups. Let G be a compact
group and let H C G be a subgroup of G. Let X = G/H be a homogeneous space of G. Suppose that f is a positive
definite, left G-invariant, f(gx,gy) = f(z,y) normalized function on X x X so that fw vex dzdy f(z,y) =1 and

k
Yv1,v2, ..., Uk € C, V1,29, ..., € X, Zvi@jf(xi,xj) >0
j=1
Then, using a result of [20], we may expand f as
flay) =Y Te[fp(lg(y) " g(x)] "))
peé
where the coefficients f# have additional sparsity constraints (see Proposition 1 in [20] ) and g(x) is the G representative

of v € X = G/H. Again, applying Bochner’s Theorem on Compact Groups XV B, each of the matrices f” =0 1is
positive semi-definite.

XVI. BEYOND COMPACT GROUPS: REPRESENTATION THEORY ON LOCALLY COMPACT
GROUPS

Compact groups always have irreducible representations of finite dimension. Locally compact groups do not have to
satisfy this property. Specifically, locally compact groups may have irreducible representations that live in a Hilbert

space of infinite dimensions. Hilbert spaces [11] are generalizations of finite dimensional vector spaces to vector spaces
that may be uncountably infinite-dimensional. Formally, a Hilbert space is a vector space V equipped with an inner
product (-,-) : V x V — C such that the ({-,-), V) is a complete metric space [11]. Examples of Hilbert spaces are

square integrable function spaces with inner product,
() = [ do Fygla)

Locally compact groups have unitary irreducible representations G that carry both point and continuous indices.
Fortunately, locally compact groups behave very similar to compact groups. Let H be a Hilbert space. A unitary Lie
representation of (p, H) is a representation such that

Vh,k € H, g— (hlp(g)|k)

is a continuous function of g. Locally compact groups, although not compact, satisfy the following key property: the

Gel’fand—Raikov theorem [32] then states that points of G are separated by irreducible unitary representations of G,
i.e. for any two group elements g, ¢’ € G, there exist a unitary Lie representation (p, H) such that
p(g) # pg’)

Thus, the matrix elements (h|p(g)|k) are dense in the space of square integrable functions. In other words, for any
compact subset of the group, if f € C then there is an expansion of f(g) in terms of the matrix elements (h|p(g)|k).

The actual statement of Gel’fand-Raikov [32] is “For every locally compact group, there exists a complete system
of irreducible unitary representations.” It should also be noted that the Parseval-Plancheral theorem can also be
generalized to locally compact groups [28]. Using the Gel’fand-Raikov theorem [32], the set of matrix elements of

unitary irreducible representations is dense in the space of square-integrable functions on a locally compact group.
Harmonic functions are defined as the overlap of the irreducible representation ¢ matrix elements |¢k) in the position
basis as,

Ve e X, Yeo(x), = (x|lk)

where |z) is the position ket. In general, harmonics have an index p that is discrete and an index k that is continuous.
The harmonics are orthogonal in both the point and continuous index,

/ Ao Vi (@) Yier () = 6,06 (k — )
xeX
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where 6(¥) () is the delta function in d-dimensions. Furthermore, the harmonics form a complete basis of L2[X], so
that

Ve LX), f(r)=3 / dk £, (k)Y ()

The Fourier coefficients are given by

fo(k) = / i )Y

where the Fourier coefficients fp(k) carry discrete index p and continuous index k.
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Appendix A: Representation Theory of Unitary Group U(d)

The representation theory of the group U(d) was worked out in the early 1900s by Jacobi, Schur and Weyl, among
others. The representation theory of the group U(d) is especially elegant and is intimately related to the representation
theory of the symmetric group. The unitary group U(d) is both semi-simple and compact so the set of irreducible
representations of U(d) are countably infinite. Let A = (A1, Ag, ..., A ) be an integer partition with A\ > Ao > ... > Ay
Characters of irreducible representations are given by

sx(21, 22, oy 2m) = Xa(2) : (C)™ — C

where the sy are called called Schur functions. Define the function

A1+m—1 _Ai+m—1 A+m—1
2] 25 .z

Aa+m—2 _Ao+m—2 Ao+m—2
2 25 . 2z

2y Agreodom (215 22, oy Zm) = det

The Schur function is the defined by

ax(z1,22, ey Zm)

sx(z1, 22, ey 2m) = A o)

where A(z) is the Vandermode determinant.

Appendix B: Multi-Linear Algebra

We briefly review some multi-linear algebra concepts and operations on tensor product spaces. We specifically
discuss partial transpose and partial conjugation, which are some standard tools in quantum information theory [24].

1. Partial Trace

The partial trace is a standard tool in quantum information theory [24]. Let H = H4 ® Hp be a Hilbert space
composed of the H4 and Hp Hilbert spaces. Let O be an operator defined on W. The partial trace of an operator
on the H4 or Hp subspace is then defined as

OW =Trp[0], OY) =Tr,[0]

respectively, where the matrix elements of the partially traced operators are defined as

dB dA
ng‘) = Oirjn, 05;3) = Okin
k=1 k=1

An operator O is said to be separable if O = O4 ® Op factorizes. Partial traces of separable operators satisfy
O = Trg[0] = Tr[0B]04, OP) = Tru[0] = Tr[04]05
A generic operator is not separable. However, via the operator-Schmidt decomposition.

Theorem 2 (Operator Schmidt-Decomposition). Let O be an operator defined on the V& V' tensor product space.
The operator O can always be written as

No

O=> piAi® By
=1

where py are positive real numbers and the operators Ay and By are orthogonal on the V' subspaces,
TT[AZAZ/] = 555/ = T’I“[B;Bg/]

the integer No (the rank of the matrixz) counts the minimum number of tensor product operators needed to decompose
O. No is called the Schmidt number of the operator O.
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The partial trace operation satisfies a uniqueness property.

Theorem 3 ( Uniqueness of Partial Trace ). The partial trace is the unique linear map
Trp : L(A® B) — L(A) (B1)
that satisfies the property

VHp € L(B), VHy € L(A), TTB[HA ®HB] = TT’[HB}HA

2. Partial Transpose and Partial Conjugation

Let V be a vector space over C of dimension d. Let V ® V' be the vector space which is a tensor product of V' with
itself. The partial transpose and partial conjugate are often used tools in quantum information theory [23, 33].

a. Partial Transpose

Let |i7) be a set of basis elements of V' ® V. We will denote P; as the partial transpose on the first copy of the V'
subspace and P, as the partial transpose on the second copy of the V subspace. Using Bra-Ket notation, We have
that,

(i X P kO) = (kj| X|il) (i X"2|ke) = (i0] X |kj)

The action of P; and P, is commutative. The action of P; followed by P, (or vise versa) returns the matrix
transpose. For any matrix X on V@V,

(Xpl)Pz — XT — (XPZ)PI
A separable operator is one that can be written as the tensor product of two operators. Let X be a separable
operator with X = X7 ® X5. Then the partial transpose of the operator X on the i-th tensor product subspace P; is
defined as
xh=xTeox, xPP=Xx 0Xx7
Any matrix X on V ® V can always be written as a sum of separable operators (Need a Cite here)
1 2
x=Yx"ex?

and the partial transpose of X given by

xh — Z(Xfl))T ® Xi(2) xP ZXi(l) ® (Xi(2))T

The transpose of a matrix satisfies the property,
XV)T =vyTxT
A similar rule holds for the partial transpose. We have that
(XY)P = (vTXxT)P: (xy)P: = (vyTxT)P
If X = X; ® X5 is a separable operator, this identity can be further simplified. We have that,

(X)) = (12 X)) Y (XToly) (YX)" =X @1)Y" (1, 0 X))
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b. Partial Conjugation

Partial Conjugation is the complex version of Partial Transposition. Let X be a separable operator with X =
X7 ® X5. Then the partial conjugate of the operator X on the i-th tensor product subspace C; is defined as

X9 =XoX, X=X 0X]
Any matrix X on V ® V can always be written as a sum of separable operators
x=>xMex?
and the partial conjugate of X given by

xC1 — Z(Xi(l))f ®Xi(2) xC2 ZXZ’(l) ® (X(Q))T

?

The action of C; and C5 is commutative. The action of C followed by Cy (or vise versa) returns the matrix conjugate.
For any matrix X on V®V,

(XO1)C2 = xT = (XC2)C
The conjugate of a matrix satisfies the property,
(XY =yTxT
A similar rule holds for the partial transpose. We have that
(XY)© = (vIxhe  (xy)% = (vixho
If X = X; ® X5 is a separable operator, this identity can be further simplified. We have that,

(XY)' = (140 X)Y (XT @1y) (VX)) = (XT ©14)Y (1, ® Xs)
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