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This is a set of notes dealing with the representations of compact groups over the field R or C. The
key ideas of representation theory are covered; namely Schur’s lemma, the orthogonality theorems,
the Peter-Weyl theorem and the Parseval-Plancherel theorem. We discuss some operations that can
be performed on representations, including the direct sum, induced/restriction and tensor product
representations. Armed with these tools, we discuss a few specific examples of group representations
that occur frequently in physics and deep learning. We also discuss a few more ‘exotic’ topics that
are not usually covered in representation theory textbooks. We focus on the representation theory of
the symmetric group Sn, Shur Polynomials and the Schur-Weyl duality. Finally, we review Bochner’s
theorems on commutative and non-commutative groups with applications to kernel methods.
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I. INTRODUCTION

Representation theory is the mathematical framework for studying abstract groups by representing their elements
as linear transformations (or matrices) on vector spaces. The representation theory of compact groups is particularly
elegant, and is a powerful generalization of standard Fourier analysis. The main tool in representation theory of
compact groups is the decomposition of the group actions into simpler, irreducible representations; analogous to
breaking down complex waveforms into sinusoidal components in Fourier analysis. Methods in representation theory
can be utilized anytime a system exhibits symmetry or can be described by a group action. These methods allow us to
analyze and simplify problems across mathematics, physics, and engineering by exploiting the structure of underlying
symmetry.

A. Who Cares? Why Should I Read This?

As mentioned previously, there exist many excellent textbooks on group theory [7, 14, 30, 34]. These books
were published before the advent of equivarient deep learning [5]. I hope that these notes provide an overview of
representation theory on compact groups which includes both some of the recent developments in equivariant learning
theory and the historical uses of representation theory in physics. One very fruitful research direction has been to
take classical representation theory and apply it to machine learning problems [10, 16, 22, 27]. The goal of these notes
is to give the reader a set of tools that can potentially be applied to equivarient deep learning research, while also
discussing some of the historical development of the subject.

B. History of Representation Theory

The representation theory of compact groups has its roots in 19th-century harmonic analysis and the study of
symmetry in physics and mathematics. The history of the representation theory of compact groups can be split
into two eras: Commutative and Non-Commutative. The Commutative era began with the development of classical
electromagnetism and Joseph Fourier’s discovery of Fourier Analysis in 1807. The idea of decomposing functions
into periodic components led to the representation theory of the circle group (also called U(1) or SO(2)) and its
finite subgroups (namely ZN the cyclic groups of order N). The non-commutative era was mostly motivated by the
development of quantum mechanics in the 1920s. In quantum mechanics, symmetries act on Hilbert space states to
form representations. For this reason, projective representations over the projective complex space. The complex
representations of groups like SU(2) or SU(5) form the backbone of many results in quantum chemistry and particle
physics. In the early 20th century, Hermann Weyl established a foundation for compact groups, proving that every
finite-dimensional representation of a compact group can be decomposed into irreducible representations.
Timeline:

• First formal definition of a group: Évariste Galois defines the concept of a group in the context of solving polynomial
equations in 1832.

• First formal definition of a group representation: Ferdinand Georg Frobenius introduces the concept of group represen-
tations (as linear transformations over vector spaces) in 1896.

• Sophus Lie writes ‘Theorie der Transformationsgruppen’, establishing the basics of Lie group theory: 1890.

• Frobenius develops character theory for finite groups: 1896-1897.

• Hermann Weyl proves that every finite-dimensional representation of a compact group can be decomposed into irreducible
representations: 1925.

• Fritz Peter and Herman Weyl develop the Peter-Weyl theorem, a key result in harmonic analysis on compact groups:
1927.

• Eugene Wigner publishes Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra: 1931. (This
work was a cornerstone in applying representation theory to quantum mechanics and earned Wigner the Nobel Prize in
1963.)

• John von Neumann formalizes the connection between group theory and quantum mechanics, particularly in the context
of symmetry groups: 1930s.

• Claude Chevalley develops the algebraic theory of Lie groups and Lie algebras: 1940.

• Harish-Chandra develops the theory of foundations of harmonic analysis on semisimple Lie groups. Harish-Chandra
developes the Harish-Chandra integral formula: 1950s-1960s.
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FIG. 1: A timeline of some key devolvements in representation theory.

C. Applications of Representation Theory

We summarize some applications of representation theory of compact groups.

• Need to add more citations here

Physics and Chemistry Compact groups, such as SU(2) and SU(3), play a critical role in quantum mechanics
and particle physics, describing spin, angular momentum, and the Standard Model’s gauge symmetries. Molecular
symmetry groups are compact, and their representations explain spectral lines, bonding, and reaction mechanisms.
Harmonic Analysis, Topology and Geometry In algebraic topology, symmetry groups are used to study invariants of

spaces. Compact Lie groups, feature prominently in the study of fiber bundles and gauge theory, connecting topology
with quantum field theory. Representations of these groups help classify principal bundles and elucidate the structure
of topological spaces through their symmetries.
Engineering and Signal Processing Representation theory has a broad impact in engineering and computer graphics.
Spherical harmonics efficiently encode 3D models by capturing their rotational symmetries. Spherical harmonics are
used in surface reconstruction, lighting models, and shape recognition in 3D imaging.
Equivariant Machine Learning Recent applications include equivariant neural networks, leveraging compact groups

to build models invariant to symmetries of the problem instance.
In summary, the representation theory of compact groups bridges abstract algebra, geometry, and analysis with

far-reaching implications across both pure and applied sciences. It continues to be a dynamic area of research with
modern applications in deep learning and theoretical physics. These note provide a good introduction to some of
the techniques and ideas that I have found useful. These notes are a compilation of my own work [4, 15–17, 36]. I
emphasize that these notes are not a comprehensive exposition of representation theory and if you are interested in
learning more, please see [6, 7, 14, 30, 34].

II. GROUP THEORY

We establish some notation and review some elements of representation theory. For a comprehensive review of
representation theory, please see [29, 34]. The identity element of any group G will be denoted as e. A subgroup H
of G will be denoted as H ⊆ G. We will always work over the field C unless otherwise specified.
Group Theory A group is a mathematical description of a symmetry. Formally, a group G is a non-empty set combined
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with a associative binary operation · : G×G → G that satisfies the following properties

existence of identity: e ∈ G, s.t. ∀g ∈ G, e · g = g · e = g

existence of inverse: ∀g ∈ G, =⇒ ∃g−1 ∈ G, g · g−1 = g−1 · g = e

Oftentimes, we wish to work with a group that can acts on a set of objects in a natural way. For example, when we
think about three dimensional rotations, we naturally think of how rotations act on objects. This idea is formalized
with the concept of a group action.

A. Group Actions

Let Ω be a set. A group action Φ of G on Ω is a map Φ : G× Ω → Ω which satisfies

Identity Property: ∀ω ∈ Ω, Φ(e, ω) = ω (1)

Compositional Property: ∀g1, g2 ∈ G, ∀ω ∈ Ω, Φ(g1g2, ω) = Φ(g1,Φ(g2, ω))

We will often suppress the Φ function and write Φ(g, ω) = g · ω.

Ω Ω′

Ω Ω′

Φ(g,·)

Ψ

Φ′(g,·)

Ψ

FIG. 2: Commutative Diagram For G-equivariant function: Let Φ(g, ·) : G× Ω → Ω denote the action of G on Ω.
Let Φ′(g, ·) : G× Ω′ → Ω′ denote the action of G on Ω′. The map Ψ : Ω → Ω′ is G-equivariant if and only if the
following diagram is commutative for all g ∈ G.

Let G have group action Φ on Ω and group action Φ′ on Ω′. A mapping Ψ : Ω → Ω′ is said to be G-equivariant if
and only if

∀g ∈ G,∀ω ∈ Ω, Ψ(Φ(g, ω)) = Φ′(g,Ψ(ω)) (2)

Diagrammatically, the map Ψ is G-equivariant if and only if the diagram IIA is commutative.

B. Lie Groups

Lie group theory is the study of continuous groups. We review some basic concepts of Lie group theory. A full
treatment of Lie group theory can be found in [12, 14, 30, 34]. A Lie group G is a group that is also a smooth manifold
with the requirement that, for all g, h ∈ G, the map g×h → gh : G×G → G is smooth and the map g → g−1 : G → G
is smooth. A homeomorphism of Lie groups is a smooth map Φ : G → H that satisfies the relation

∀g, g′ ∈ G, Φ(gg′) = Φ(g)Φ(g′)

The Haar measure [31], is the volume element dg of the Lie group G which is left invariant, we have that

∀h ∈ H,

∫
g∈G

d(hg) =

∫
g∈G

dg

For compact groups, the Haar measure is both left and right invariant so that d(hg) = dg = d(gh). Left and right
invariance uniquely defines the Haar measure dg on a compact group. Homogeneous spaces X = G/H of G inherit a
measure dx on X from the Haar measure. The space of volume elements on X is one-dimensional so

∀g ∈ G, d(g · x) = ∆(g−1)dx

must hold where ∆(g) : G → C is called the modular function of the volume element dx. A famous result of (cite)
states that all compact groups are unimodular. In the unimodular case the volume element dx is called the invariant
measure on G.
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1. Lie Algebra

A Lie algebra g is a vector space equipped with a anti-symmetric two-form [·, ·] : g × g → g which satisfies the
Jacobi identity,

Jacobi: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Semi-Simple Lie Algebras Let Xi be a basis of the Lie algebra g. The Lie algebra g is called semi-simple if there is
no proper subset Ji of the Xi such that the Ji are an idea of g under the Lie bracket operator [·, ·]. A Lie algebra is
called simple if it can not be decomposed into a direct sum of semi-simple Lie algebras. Just as we speak of Lie group
homeomorphisms, a homeomorphism of Lie algebras is a map ϕ : g → h that preserves the Lie bracket of g so that

∀X,Y ∈ g, ϕ([X,Y ]) = [ϕ(X), ϕ(Y )]

Let Xi be a basis of the Lie algebra g. The structure constants fk
ij of g are defined as

[Xi, Xj ] =
∑
k

fk
ijXk

so that the constants fk
ij are the decomposition of the Lie bracket in the vector space g.

III. REPRESENTATION THEORY

Let V be a vector space over the field C. A complex representation (ρ, V ) of a group G consists of the vector space
V and a group homomorphism ρ : G → Hom[V, V ]. By definition, the homomorphism ρ must satisfy

∀g, g′ ∈ G, ∀v ∈ V, ρ(g)ρ(g′)v = ρ(gg′)v

Heuristically, a group representation can be thought of as the embedding of an group (which is an abstract mathe-
matical object) into a set of matrices (which we as computer scientists like because matrices are naturally stored as
arrays!). Two representations which look very different can actually be the same representation. Specifically, let (ρ, V )
be a representation. Let U be an invertible matrix. By performing a change of basis, we can define the representation
(UρU−1, V ) as

∀g ∈ G, (UρU−1)(g) · v = Uρ(g)U−1v

It is easy to see that (UρU−1, V ) is a valid group representation as

∀g ∈ G, (UρU−1)(gg′) = (Uρ(gg′)U−1) = (Uρ(g)U−1Uρ(g′)U−1) = UρU−1)(g)UρU−1)(g′) (3)

Two representations (ρ, V ) and (σ,W ) are said to be equivalent representations if there exists a matrix Φ

∀g ∈ G, Φρ(g) = σ(g)Φ

The linear map Φ is said to be a G-intertwiner of the (ρ, V ) and (σ,W ) representations. The space of all G-intertwiners
is denoted as HomG[(ρ, V ), (σ,W )]. Specifically,

HomG[(ρ, V ), (σ,W )] = { Φ : V → W | ∀g ∈ G, Φρ(g) = σ(g)Φ, Φ is linear }

The sum of two G-intertwiners is again G-intertwiner and HomG[(ρ, V ), (σ,W )] forms a vector space over C. The
vector space of of G-intertwiners from a representation to itself is called the G endomorpism space of the representation
(ρ, V ),

EndG[(ρ, V )] = HomG[(ρ, V ), (ρ, V )]

which we will refer to as the endomorpism space of (ρ, V ). Much of classical group theory studies the structure of the
intertwiners of representations [7]. A representation (ρ, V ) is said to be a unitary representation if the vector space
V can be equipped with an inner product ⟨·, ·⟩ such that

∀g ∈ G, ∀v, w ∈ V, ⟨ρ(g)v, ρ(g)w⟩ = ⟨v, w⟩
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The unitary theorem in representation theory [7] says that any representation of a compact group G is equivalent
to a unitary representation of G. A representation is said to be reducible if it breaks into a direct sum of smaller
representations. Specifically, a unitary representation ρ is reducible if there exists an unitary matrix U such that

∀g ∈ G, ρ(g) = U [

k⊕
i=1

σi(g)]U
†

where k ≥ 2 and σi are smaller representations of G. The set of all non-equivalent unitary representations of a group
G will be denoted as Ĝ. All representations of compact groups G can be decomposed into direct sums of irreducible
representations. Specifically, if (σ, V ) is a G-representation,

(σ, V ) = U [
⊕
ρ∈Ĝ

mρ
σ(ρ, Vρ)]U

†

where U is a unitary matrix and the integers mρ
σ denote the number of copies of the irreducible (ρ, Vρ) in the

representation (σ, V ).

A. Lie Group and Lie Algebra Representations

Representations of Lie groups are defined in the same way as representations of finite groups. Let V be a vector
space. A representation of a Lie group is a Lie group homeomorpism ρ : G → GL(V ) and a vector space V satisfying,

∀g ∈ G, ∀v ∈ V, ρ(gg′)v = ρ(g)ρ(g′)v

We can similarly speak of a Lie algebra representation as a homeopmorpism σ : g → GL(V ) that preserves Lie bracket
structure

∀X,Y ∈ g, σ([X,Y ]) = [σ(X), σ(Y )]

If G is a connected group, the map exp : g → G, is defined as

∀X ∈ g, exp(itX) =

∞∑
n=0

(it)n

n!
Xn

The key property of exp is that the exponential map exp commutes with homeomorphism of algebra and group IIIA,
so that there is an isomerism between Lie algebra representations and Lie group representations.

g h

G H

dΦ|e

exp exp

Φ

FIG. 3: The exponential map: Let Φ : G → H be a homeomorphism of groups. Let dΦ|e : g → h be the derivative
map evaluated at the identity of G. Then, the above map is commutative and dΦ|e is a Lie algebra homeomorphism.

1. Adjoint Representation

There are two canonical representations of the Lie algebra and Lie group known as the adjoint representations.
a. Little Adjoint ad Representation The adjoint (sometime called the little adjoint) ad representation is a

canonical representation of a Lie algebra. The adjoint action is defined via the formula

ad(X)Y = [X,Y ]

So that as a matrix the ad representation is of dimension equal to the number of Lie algebra basis elements. The
adjoint action satisfies

[ad(X), ad(Y )] = ad([X,Y ])

which preserves the Lie bracket structure and is thus a valid Lie algebra representation. The adjoint action acts
directly on g, and the dimension of the adjoint representation is the dimension of the vector space g.
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b. Big Adjoint Ad Representation There is an analogous adjoint (sometimes called the big adjoint) Ad repre-
sentation of the Lie group G on g. Consider the conjugation map Φg : G → G on the Lie group G given by

Φg(h) = ghg−1

the conjugation map is an Lie automorpism of G. The adjoint map Adg evaluated at g ∈ G is then the conjugation
map evaluated at the identity

∀g ∈ G, Adg = dΦg|e : Te(G) → Te(G)

so that for fixed g ∈ G, Adg : g → g. Thus, Adg : G → aut(g). Let X ∈ g be Lie algebra element,

∀g ∈ G, AdgX =
d

dt
[g exp(tX)g−1]|t=0

Note that

∀g, g′ ∈ G, Adg ◦Adg′ = Adgg′

so that (Ad, g) is a Lie group representation of G with dimension equal to the vector space dimension of g. Let ⟨·, ·⟩
be an inner product on g. The inner product ⟨·, ·⟩ is said to be Ad-invariant if and only if,

∀g ∈ G, ∀x, y ∈ g, ⟨x, y⟩ = ⟨Adgx,Adgy⟩

IV. SCHUR’S LEMMA

Schur’s lemma is one of the fundamental results in representation theory [34]. Let G be a compact group. Let
(ρ, V ) and (σ,W ) be irreducible representations of G. Then, Schur’s lemma states the following: Let Φ : V → W be
an intertwiner of (ρ, V ) and (σ,W ). Then, Φ is either zero or the proportional to the identity map. In other words,

if ∀g ∈ G, Φρ(g) = σ(g)Φ =⇒

 Φ ∝ I if (ρ, V ) = (σ,W )

Φ = 0 if else

Equivalently, if (ρ, V ) and (σ,W ) are irreducible representations, the space of intertwiners of representations satisfies

HomG[(ρ, V ), (σ,W )] ∼=

 C if (ρ, V ) = (σ,W )

0 if else

A corollary of Schur’s lemma is the following: Let (ρ, V ) be a irreducible representation of G. Let M ∈ Cdρ×dρ be a
matrix. Suppose that

∀g ∈ G, ρ(g)M = Mρ(g)

holds. Then, M is proportional to the identity matrix. The constant of proportionally can be determined by taking
traces. Specifically,

M =
Tr[M ]

dρ
Idρ

Schur’s lemma is the key result of representation theory. Schur’s lemma
By convention, the set of all non-equivalent representations of a group G will be denoted as

Ĝ = { (σ,Wσ) | Representative irreducibles of G }
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A. Extended Shur Lemma

Schur’s Lemma can be extended to reducible representations. Let (ρ, Vρ) and (σ, Vσ) be G representations which
decompose into irriducibles as

(ρ, Vρ) = U [
⊕
τ∈Ĝ

mρ
τ (τ,Wτ )]U

† (σ, Vσ) = V [
⊕
τ∈Ĝ

mσ
τ (τ,Wτ )]V

†

where U, V are fixed unitary matrices that diagonalize the ρ and σ representations, respectively. Then, the vector
space of intertwiners between (ρ, Vρ) and (σ, Vσ) has dimension

dimHomG[(ρ, Vρ), (σ, Vσ)] =
∑
τ∈Ĝ

mρ
τm

σ
τ

Furthermore, elements of the space HomG[(ρ, Vρ), (σ, Vσ)] have block structure. Specifically, any Φ ∈
HomG[(ρ, Vρ), (σ, Vσ)] can be parameterized in block diagonal form as

Φ = U [
⊕
τ∈Ĝ

Φτ ⊗ Idτ
]V †

and each block Φτ is a mρ
τ ×mσ

τ matrix written as

Φτ =


Φτ

11 Φτ
12 ... Φτ

1mσ
τ

Φτ
21 Φτ

22 ... Φτ
2mσ

τ

... ... ... ...

Φτ
mρ

τ1
Φτ

mρ
τ2

... Φτ
mρ

τmσ
τ


where each Φτ

ij ∈ C is a complex constant and dτ = dim(τ,Wτ ) is the dimension of the irreducible G-representation
(τ,Wτ ).

V. REAL, COMPLEX AND PSEUDOREAL REPRESENTATIONS

Let (ρ, V ) be a irreducible unitary representation of a compact group G over a field of characteristic zero. The
complex conjugation of the representation ρ is again a representation of G with action

∀g ∈ G, ρ̄(g) · v = ¯ρ(g)v

A representation is said to be a self-dual representation if there exists an invertible matrix U such that

∀g ∈ G, ρ̄(g) = Uρ(g)U−1

Now, using the unitary of the representation (ρ, V ) we have that

ρ(g−1) = ρ(g)† = [ρ̄(g)]T

If we assume that the matrix ρ is self-dual, we have that

ρ(g−1) = [ρ̄(g)]T = [Uρ(g)U−1]T = U−T ρ(g)TUT

Thus, we must have that

∀g ∈ G, (U−1UT )ρ(g) = ρ(g)(U−1UT )

Thus, by Schur’s lemma, we must have that

(U−1UT ) = λIdρ
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where λ ∈ C is a constant. This implies that

U = λUT

invoking this relation twice, we must have that λ = ±1. Thus, a self-dual representation satisfying

ρ̄(g) = Uρ(g)U−1

must always satisfy the constraint that

UT = ±U

so that the matrix U is either symmetric or anti-symmetric. Furthermore, the matrix U can always be chosen to be
unitary UU† = 1 = U†U . We thus have that

ŪU = ± = UŪ and UUT = ± = UTU

A. Frobenius-Schur Indicators

To classify irreducible representations as real, complex, or pseudoreal, we use the Schur indicator. For an irreducible
unitary representation (ρ, V ) of a compact group G, the Schur indicator ν is defined as:

ν =
1

|G|
∑
g∈G

χ(g2),

where χ is the character of ρ, and |G| is the order of the group G. The Schur indicator takes the following values:

• ν = +1: The representation is real (orthogonal), i.e., ρ̄(g) = Uρ(g)U−1 with UT = U .

• ν = −1: The representation is pseudoreal (symplectic), i.e., ρ̄(g) = Uρ(g)U−1 with UT = −U .

• ν = 0: The representation is complex, i.e., ρ is not equivalent to ρ̄.

B. Connection to Self-Dual Representations

For self-dual representations, ν determines the symmetry properties of the intertwining matrix U . Specifically:

• For ν = +1, the matrix U is symmetric (UT = U).

• For ν = −1, the matrix U is antisymmetric (UT = −U).

These properties align with the condition derived earlier:

UT = ±U.

VI. HARMONIC ANALYSIS

Harmonic analysis is a branch of mathematics that explores the representation of functions or signals as the
superposition of basic waves, and studies the properties and applications of these representations.

Applications of harmonic analysis are widespread across numerous disciplines. In engineering, it is pivotal in signal
processing, enabling the filtering and compression of signals. In physics, it aids in solving differential equations that de-
scribe physical phenomena. Moreover, harmonic analysis has significant implications in number theory, representation
theory, and even neuroscience, where it assists in understanding complex patterns of neural activity.

Harish-Chandra’s development of harmonic analysis on Lie groups will be discussed in a later section (cite). Harish-
Chandra made profound contributions to harmonic analysis, particularly in the context of semisimple Lie groups. His
work laid the foundation for the representation theory of these groups, developing the theory of Eisenstein integrals
and the Plancherel theorem for semisimple Lie groups. These contributions have been instrumental in advancing the
field and continue to influence contemporary research.
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A. Irreducible Representation Orthogonality Relations

Matrix elements of irriducibles representations satisfy a set of orthogonality relations [35]. Specifically, let ρ and σ
be irreducible representations of the group G. Then,∑

g∈G

ρkk′(g)σ(g)†nn′ =
|G|
dρ

δρ,σδknδk′n′

where |G| is the cardinality of the group. These relations are the cornerstone of generalized harmonic analysis.
Specifically, when averaged over elements of the group G, matrix elements of non-equivalent representations form
an orthogonal basis. By the Peter-Weyl theorem, which is discussed later VIB, matrix elements of irriducibles
representations also form a complete set.

1. Character Theory

The character of a representation is a map χρ : G → C defined as

χρ(g) = Tr[ρ(g)]

The character is invariant under normal transformations χρ(g) = χρ(hgh
−1). Furthermore, the character is indepen-

dent of the choice of basis of the representation. Specifically, under a change of basis ρ(g) → Uρ(g)U†, the character
is unchanged as χUρU†(g) = Tr[Uρ(g)U†] = Tr[ρ(g)U†U ] = Tr[ρ(g)] = χρ(g). Using the orthogonality relations VIA,
any two irriducibles ρ and ρ′ characters satisfy the orthogonality relation,∫

g∈G

dg χρ(g)χρ′(g) = δρρ′ |G|

The set of characters forms an orthonormal, but not complete, set of basis functions on G. In many group theory
applications we deal with functions which are invariant under group conjugation

∀g, h ∈ G, f(ghg−1) = f(h)

such functions f are called normal. Characters of groups form a complete basis over the set of normal complex valued
functions defined on G [7].

B. Peter-Weyl Theorem

The Peter-Weyl theorem [7] states that all representations of compact groups can be decomposed into a countably
infinite sets of irreducible representations. Consider the functions

F = { f | f : G → C }

i.e. all complex valued functions defined on G. The set F forms a vector space over the field C. The group G acts on
vector space F in the natural way. Specifically, define the group action λ : G×F → F as

∀f ∈ F , ∀g, g′ ∈ G, (λg · f)(g′) = f(g−1g) ∈ F

The action satisfies λgλg′ = λgg′ and is a group homeomorphism. The left-regular representation of a group is defined
as (λ,F). The Peter-Weyl theorem [7] states that

(λ,F) = U [
⊕
ρ∈Ĝ

dρ(ρ, Vρ)]U
†

where U is the unitary matrix. Thus, the left-regular representation decomposes into dρ copies of each (ρ, Vρ)
irreducible. In other words, the Peter-Weyl theorem states that matrix elements of irreducible G-representations form
an orthonormal base of the space of square integrable functions on G.
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1. Fourier Transform on Groups

The Peter-Weyl Theorem allows for the Fourier Transform on groups [7]. Specifically, let G be a compact group.
Let f ∈ F . The Fourier coefficient with respect to the ρ-th irreducible is defined as

f̂ρ =

∫
g∈G

dg f(g)ρ(g)

where each f̂ρ ∈ Cdρ×dρ is a complex dρ × dρ matrix. The Inverse Fourier transform is then defined as

f(g) =
∑
ρ∈Ĝ

dρTr[ρ(g
−1)f̂ρ]

a. Fourier Transform on Abelian Groups The standard Fourier Transform can be recovered by considering com-
mutative groups. Specifically, let ZN be the cyclic group of order N . Let g be a generator of ZN . Then, all irreducible
representations of ZN are one dimensional and take the form

ρk(g
n) = exp(

ikn

N
)

where 1 ≤ k ≤ N is an integer. Then, using the Fourier Transform on groups decomposition VIB 1, we have that

f̂k =

N∑
i=1

fn exp(
ikn

N
) fn =

1

N

N∑
i=1

f̂k exp(−
ikn

N
)

which is the standard Fourier transformation for a discrete single-variable waveform.

C. Parseval−Plancherel Theorem on Compact Groups

In Fourier analysis, Parseval’s theorem states that the total energy of a function f(x) in the time (or spatial) domain

is equal to the total energy of its Fourier transform f̂(ξ) in the frequency domain. Specifically, for a square-integrable
function f(x), the theorem is expressed as:∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|f̂(ξ)|2 dξ,

where f̂(ξ) is the Fourier transform of f(x). This result demonstrates the conservation of energy under the Fourier
transform and is fundamental in signal processing, physics, and engineering, ensuring that no energy is lost when
moving between domains. The Parseval–Plancherel is the non-commutative generalization of the Parseval theorem.

The Parseval–Plancherel theorem relates the L2(G) norm of a function to the norm of its Fourier coefficients.
Specifically, let f : G → C. Consider the Fourier expansion of f ,

f(g) =
∑
ρ∈Ĝ

dρ∑
kk′=1

dρf
ρ
kk′ρkk′(g)

Now, consider the L2(G) norm of f ,

||f ||2L2(G) =

∫
g∈G

dg |f(g)|2

Using the Fourier expansion, we have that

||f ||2L2(G) =

∫
g∈G

dg |f(g)|2 =

∫
g∈G

dg
∑

ρρ′∈Ĝ

dρdρ′fρ
kk′ρkk′(g)(fρ

kk′)
†ρkk′(g)†



14

Using the orthogonality relations, we have that∫
g∈G

dg
∑

ρρ′∈Ĝ

dρdρ′fρ
kk′ρkk′(g)(fρ

kk′)
†ρkk′(g)† =

∑
ρ∈Ĝ

d2ρ||f̂ρ||2F

Ergo,

||f ||2L2(G) =
∑
ρ∈Ĝ

d2ρ||f̂ρ||2F

This is known as the Parseval–Plancherel relation on compact groups and relates the function space norm of f to the
Fourier transformation of f .

VII. INDUCED AND RESTRICTED REPRESENTATIONS OF COMPACT GROUPS

We naturally understand that the group of in-plane rotations is a subgroup of the set of all three dimensional
rotations. The Induced and Restricted functors provide a way to generate representations of a subgroup from repre-
sentations of a larger group and vice-versa. This is especially important in physics, where the number of gapless modes
in symmetry breaking can be determined by restriction representations [35]. Similarly, emergent larger symmetries
can be understood by induced representations, due to the universality property (ref).

A. Restricted Representation

Let H ⊆ G. Let (ρ, V ) be a representation of G. The restricted representation of (ρ, V ) from G to H is denoted as

ResGH [(ρ, V )]. Intuitively, ResGH [(ρ, V )] can be viewed as (ρ, V ) evaluated on the subgroup H. Specifically,

∀v ∈ V, ResGH [ρ](h)v = ρ(h)v

Note that the restricted representation and the original representation both live on the same vector space V .

B. Induced Representation

The induction representation is a way to construct representations of a larger group G out of representations of a
subgroup H ⊆ G. Let (ρ, V ) be a representation of H. The induced representation of (ρ, V ) from H to G is denoted

as IndGH [(ρ, V )]. Define the space of functions

F = { f | f : G → V, ∀h ∈ H, f(gh) = ρ(h−1)f(g) }

Then the induced representation is defined as (π,F) = IndGH [(ρ, V )] where the induced action π acts on the function
space F via

∀g, g′ ∈ G, ∀f ∈ F (π(g) · f)(g′) = f(g−1g′)

1. Induced Representation for Finite Groups

There is also an equivalent definition of the induced representation for finite groups that is slightly more intuitive
[9]. Let G be a group and let H ⊆ G. The set of left cosets of G/H form a partition of G so that

G =

|G/H|⋃
i=1

giH

where {gi}|G/H|
i=1 are a set of representatives of each unique left coset. Note that the choice of left coset representatives

is not unique. Now, left multiplication by the element g ∈ G is an automorphism of G. Left multiplication by g ∈ G
must thus permute left cosets of G/H so that

∀g ∈ G, g · gi = gjg(i)hi(g)
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where jg : {1, 2, ...,m} → {1, 2, ...,m} ∈ Sm is a permutation of left coset representatives. The hi(g) ∈ H is an element
of subgroup H. The map jg(i) and group element hi(g) ∈ H satisfy a compositionality property. Specifically, we have
that

∀g, g′ ∈ G, jg′ ◦ jg = jg′g, hi(g
′g) = hjg(i)(g

′) · hi(g)

which can be seen by acting on the left cosets with g followed by g′ versus acting on the left cosets with g′g. Note
that

e · gi = gi · e = gje(i)hi(e)

holds so je = e and hi(e) = e holds. Now, let (ρ, V ) be a representation of the group H. Let us define the vector
space W as

W =

|G/H|⊕
i=1

giV(i)

where the (standard albeit somewhat confusing) notation giV(i) denotes an independent copy of the vector space V .

This notation is simply a labeling and all copies of giV
H
(i) are isomorphic to V H ,

V ∼= g1V1
∼= g2V2

∼= ... ∼= g|G/H|V|G/H|

so that the space W ∼=
⊕|G/H|

i=1 V is just |G/H| independent copies of V . The induced representation lives on this

vector space, (π,W ) = IndGH [(ρ, V )]. The induced action π = IndGH ρ acts on the vector space W via

∀g ∈ G, ∀w =

|G/H|∑
i=1

givi ∈ W, π(g) · w =

|G/H|∑
i=1

σ(hi(g))vjg(i) ∈ W

where vi ∈ V(i) is in the i-th independent copy of the vector space V . Using the compositionality property of jg and

hi(g), it is easy to see that this is a valid group action so that (π,W ) = IndGH [(ρ, V )] is a valid group representation.
Note that the induced action π acts on the vector space W by permuting and left action by the H-representation
ρ(h).

2. (H ⊆ G)-Intertwiners

In order to state a theorem which establishes the universality of the induced representation, we will also consider
another definition of intertwiners between different groups. Let H ⊆ G. Let (ρ, V ) be a H-representation. Let (σ,W )
be a G-representation. We define the vector space of intertwiners of (ρ, V ) and (σ,W ) as

HomH [(ρ, V ),ResGH [(σ,W )]] = { Φ | Φ : V → W, s.t. ∀h ∈ H, Φ(ρ(h)v) = σ(h)Φ(v) }

We say that a linear map Φ : V → W is an (H ⊆ G)-intertwiner of the H-representation (ρ, V ) and the G-

representation (σ,W ) if Φ ∈ HomH [(ρ, V ),ResGH [(σ,W )]]. The induction and restriction operations are adjoint functors
[8]. By the Frobinous reciprocity theorem [8],

HomH [(ρ, V ),ResGH [(σ,W )]] ∼= HomG[Ind
G
H [(ρ, V )], (σ,W )]

and so for every Φ : V → W which intertwines (ρ, V ) and ResGH [(σ,W )] over H there is a unique Φ↑ : IndGH [V ] → W

that intertwines IndGH [(ρ, V )] and (σ,W ) over G. Not every H-representation can be realized as the restriction of a
G-representation. Thus, the universe of (H ⊆ G)-intertwiners is a proper subset of the universe of H-intertwiners.

(ρ, V ) (σ,W )

(ρ, V ) (σ,W )

ρ(h)

Φ

σ(h) σ(g)

Φ

FIG. 4: Commutative Diagram For (H ⊆ G)-intertwiner. Φ : V → W . The map

Φ ∈ HomH [(ρ, V ),ResGH [(σ,W )]] ∼= HomG[Ind
G
H [(ρ, V )], (σ,W )] if and only if the following diagram is commutative

for all h ∈ H. Note that the group G also has σ(g) action on the vector space W .

A map Φ : V → W is a (H ⊆ G)-intertwiner if and only if the diagram in VIIB 2 is commutative.
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L0.3

(ρ, V ) IndG
H(ρ, V )

(σ,W )

Φρ

Ψ
Ψ↑

FIG. 5: Commutative Diagram for Uniqueness Property of Induced Representations: The map Ψ : V → W is an
H-equivariant mapping. Using the uniqueness property of induced representations, there is a unique factorization
Ψ = Φ↑Φρ where Φρ : V → IndGH V is a H-intertwiner and Ψ↑ : IndGH → W is a G-intertwiner.

3. Universal Property of Induced Representation

A standard result in group theory establishes the following universal property of induced representations, as stated
in [8]:

Theorem 1. Let H ⊆ G. Let (ρ, V ) be any H-representation. Let IndGH(ρ, V ) be the induced representation of

(ρ, V ) from H to G. Then, there exists a unique H-equivariant linear map Φρ : V → IndGHV such that for any

G-representation (σ,W ) and any H-equivariant linear map Ψ : V → W , there is a unique G-equivariant map Ψ↑ :

IndGHV → W such that the diagram 5 is commutative.

Let (ρ, V ) be a H-representation and let (σ,W ) be a G-representation. Let Ψ : V → W where Ψ is an intertwiner
of a the H-representation and the restriction of the G-representation to an H-representation so that

∀h ∈ H, Ψρ(h) = ResGH [σ](h)Ψ

so that Ψ ∈ HomH [(ρ, V ),ResGH(σ,W )]. The universal property of the induced representation allows us to write
any such Ψ in a canonical form. Specifically, as illustrated in Figure VIIB 3, we can always uniquely decompose
Ψ = Ψ↑ ◦ Φρ where Ψ↑ ∈ HomG[Ind

G
H(ρ, V ), (σ,W )] and Ψρ : V → IndGHV is (σ,W ) independent.

(ρ, V ) (σ,W )

(ρ, V ) (σ,W )

Ψ

ρ(h) σ(g)σ(h)

Ψ

∼=

(ρ, V ) (σ,W )

IndGH(ρ, V )

IndGH(ρ, V )

(ρ, V ) (σ,W )

Φρ

Ψ

ρ(h) σ(g)σ(h)

Ψ↑

[IndG
H ρ](h) [IndG

H σ](g)

Ψ↑Φρ

Ψ

FIG. 6: Factorization Identity for Universal Property of Induced Representations: For every H-intertwiner
Ψ : V → W , there exists a G-intertwiner Φρ : V → IndGH V such that the H-intertwiner Ψ↑ : IndGH V → W is unique.

4. A Completeness Property For Induced Representations

Can every function f : G → Rc be realized as the induced mapping of functions in RH? We show that this is the
case. We have the following compositional property of induced representations [9]: Let K ⊆ H ⊆ G. Let (ρ, V ) be
any representation of K. Then,

IndGK [(ρ, V )] = IndGH [IndKH [(ρ, V )]]

which states that the induced representation of (ρ, V ) from K to G can be constructed by first inducing (ρ, V ) from
K to H and then inducing from H to G. Now, choose K = {e} to be the identity element of G. Let (ρ, V ) be the
trivial one dimensional representation of K = {e} with

dimV = 1, ρ(e)v = v
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FIG. 7: Left: Restricted representation ResGH from G to H of G-irreducibles (σi,Wi) to H-irreducibles (ρj , Vj). Not

every H-representation can be realized as the restriction of a G-representation. Right: Induced representation IndGH
from H to G of H-irreducibles (ρj , Vj) to G-irreducibles (σi,Wi). Not every H-representation can be realized as the
induction of a H-representation. The restriction and induction operations are adjoint functors. In general, the
restriction and induction operations are generically sparse. This sparsity places restrictions on what irreducibles can
appear in (H ⊆ G)-equivariant maps.

Consider the set of left cosets of H in K = {e}. We have that

H/K = H/{e} = {he|h ∈ G} = H

so the set of coset representatives of H/K is just elements of H. Using a from [9], the induced representation of (ρ, V )
from K = {e} to H is the left regular representation of H. By the same argument, the induced representation of
(ρ, V ) from K = {e} to G is the left regular representation of G. Thus,

IndHK [(ρ, V )] = (L,CH), IndGK [(ρ, V )] = (L,CG)

Using the compositionality property of the induced representation (??), we thus have that

(L,CG) = IndGH [(L,CH)]

Thus, the induced representation fromH to G of the left regular representation ofH is the left regular representation
of G.

(L,CH) (L,CG)

(L,CH) (L,CG)

IndG
H [(L,CH)]

L(h) L(g)L(h)

IndG
H [(L,CH)]

FIG. 8: Commutative Diagram for Completeness Property of Induced Representations. Lh denotes the left regular
action of H on CH . Lg denotes the left regular action of G on CG. The induced representation of the left regular

representation of H is the left regular representation of G, (L,CG) = IndGH [(L,CH)]. The induced representation
makes the diagram commutative. This should be contrasted with the definition of G-equivarience defined in IIA.

Thus, the induction operation maps the space of all group valued functions on H into the space of all group valued
functions on G.

C. Irriducibility and Induced and Restricted Representations

Let H be a subgroup of compact group G. We can use the induced representation to map representations of H
to representations of G and the restricted representation to map representations of G to representations of H. All
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representations of H break down into direct sums of irreducible representations of H. Similarly, all representations
of G break down into direct sums of irreducible representations of G. Let use denote Ĥ as a set of representatives
of all irreducible representations of H and Ĝ as a set of representatives of all irreducible representations of G. We
want to understand how the restriction and induction operations transform H-irreducibles to G-irreducibles and vice
versa. We can completely characterize how irreducibles change under the restriction and induction procedures using
branching rules and induction rules, respectively.

1. Restricted Representation and Branching Rules

Let (σ,W ) and (σ′,W ′) be G-representations. The restriction operation is linear and

ResGH [(σ,W )⊕ (σ′,W ′)] = ResGH [(σ,W )]⊕ ResGH [(σ′,W ′)]

We can study the restriction operation by looking at restrictions of the set of G-irreducibles Ĝ. The restriction
of an G-irreducible is not necessarily irreducible in H and will decompose as a direct sum of H-irreducibles. Let
(σ,Wσ) ∈ Ĝ. We can define a set of integers Bσ,ρ : Ĝ× Ĥ → Z≥0,

ResGH [(σ,Wσ)] =
⊕
ρ∈Ĥ

Bσ,ρ(ρ,Wρ)

so that Bσ,ρ counts the multiplicities of the H-irreducible (ρ,Wρ) in the restricted representation of the G-irreducible
(σ,Wσ). The Bσ,ρ are called branching rules and they have been well studied in the context of particle physics [34].
Let (σ′,W ′) be any G-representation. (σ′,W ′) will decompose into G-irreducibles as

(σ′,W ′) =
⊕
σ∈Ĝ

mσ(σ,Wσ)

where mσ counts the number of copies of the G-irreducible (σ,Wσ) in (σ′,W ′). Then, the restriced representation of
(σ′,W ′) decomposes into H-irreducibles as

ResGH [(σ′,W ′)] =
⊕
σ∈Ĝ

mσ Res
G
H [(σ,Wσ)] =

⊕
ρ∈Ĝ

∑
σ∈Ĝ

[mσBσ,ρ](ρ,Wρ)

So that the multiplicity of the (ρ,Wρ) irreducible in the restriction of (σ′,W ′) is
∑

σ∈Ĝ mσBσ,ρ. Thus, the branching
rules Bσ,ρ completely determine how an arbitrary G-representation restricts to an H-representation.

2. Induced Representation and Induction Rules

The induction operation acts linearly on representations composed of direct sums of representations. Specifically,
if (ρ1, V1) and (ρ2, V2) are representations of H, then

IndGH [(ρ1, V1)⊕ (ρ2, V2)] = IndGH [(ρ1, V1)]⊕ IndGH [(ρ2, V2)]

The induction operation IndGH maps every irreducible representation (ρ, Vρ) ∈ Ĥ to a G-representation. The induced
representation of an irreducible representation of H is not necessarily irreducible in G and will break into irreducibles
in Ĝ as

IndGH [(ρ, Vρ)] =
⊕
σ∈Ĝ

Iρ,σ(σ,Wσ)

where the integers Iρ,σ : Ĥ × Ĝ →∈ Z≥0 denotes the number of copies of the irreducible (σ,Wσ) ∈ Ĝ in the induced

representation IndGH(ρ, Vρ) of the irreducible (ρ, Vρ). The Iρ,σ are called Induction Rules and completely determine
the multiplicities of G-irreducibles in the induced representation of any H-representation. Specifically, let (ρ′, V ′) be
any representation of H. Then, (ρ′, V ′) breaks into H-irreducibles as

(ρ′, V ′) =
⊕
ρ∈Ĥ

nρ(ρ, Vρ)



19

The induced representation is linear and maps (ρ′, V ′) into a representation of G which will break into G-irreducibles
as

IndGH [(ρ′, V ′)] =
⊕
ρ∈Ĥ

nρ Ind
G
H(ρ, Vρ) =

⊕
σ∈Ĝ

(
∑
ρ∈Ĥ

nρIρ,σ)(σ,Wσ)

so that the multiplicity of (σ,Wσ) ∈ Ĝ in the induced representation of (ρ, Vρ) ∈ Ĥ is given by
∑

ρ∈Ĥ mσIρ,σ. Thus,
the induction rules Iρ,σ completely determine the multiplicities of G-representations in the induced representation of
any H-representation.

3. Irreducibility and Frobenius Reciprocity

The induction rules Iρσ : Ĥ × Ĝ → Z≥0 and the branching rules Bσρ : Ĝ× Ĥ → Z≥0 are related by the Frobenius
reciprocity theorem [8]. Let (ρ′, V ′) be any H-representation and let (σ′,W ′) be any G-representation. Then,

HomH [(ρ′, V ′),ResGH [(σ′,W ′)]] ∼= HomG[Ind
G
H [(ρ′, V ′)], (σ′,W ′)]

Choosing (ρ′, V ′) = (ρ, Vρ) ∈ Ĥ and (σ′,W ′) = (σ,Wσ) ∈ Ĝ gives Iρ,σ = Bσ,ρ. So that when viewed as matrices,
B = IT . All information about how H-representations are induced to G-representations and G-representations are
restricted to H-representations is encoded in both Bσ,ρ and Iρ,σ. It should be noted for many cases of interest, Bσ,ρ

and Iρ,σ are sparse, and have non-zero entries for only a small number of ρ and σ pairs.

VIII. TENSOR PRODUCT REPRESENTATIONS

The tensor product of two group representations is itself a group representation. Given two representations (ρ, V )
and (σ,W ) of a compact group G, their tensor product is defined as a new representation where the group action on
v ⊗ w ∈ V ⊗W is defined via:

(ρ⊗ g)(g) · (v ⊗ w) = (ρ(g) · v)⊗ (σ(g) · w), for all g ∈ G, v ∈ V, w ∈ W.

This construction is a systematic way to combine two representations into a single, group representation.

A. Decomposition into Irreducibles

A key property of compact groups is that their representations are fully reducible, meaning any representation,
including a tensor product representation, can be expressed as a direct sum of irreducible representations. Thus, the
tensor product of two representations can always be decomposed as:

ρ⊗ σ = Uρσ[
⊕
τ∈Ĝ

mτ
ρστ ]U

†
ρσ,

where Uρσ is a unitary matrix and mτ
ρσ are a set of integers that describe how many copies of the irreducible

representation τ appear in the tensor product ρ⊗σ. This decomposition is central to many applications, as it reveals
how the combined system transforms in terms of the simpler irreducible components. The matrix Uρσ, which describe
the change of basis, are sometimes referred to as Clebsch-Gordon coefficients. These coefficients arise naturally in
the decomposition of tensor product representations, particularly in the context of rotation groups such as SU(2) or
SO(3), which are widely used in quantum mechanics.

1. Example: SU(2) Tensor Product Representations

The most important example of tensor products of group representations are SU(2). Specifically, because inde-
pendent particles live in the tensor product space, combining the spins of particles or the orbital and spin angular
momentum of a single particle. For the group SU(2), irreducible representations are labeled by their spin j, which
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can take either integer or half-integer values j = 0, 1
2 , 1,

3
2 , 2, . . .. The tensor product of two irreducible representations

labeled by j1 and j2 decomposes as:

D(j1) ⊗D(j2) = Uj1,j2 [

j1+j2⊕
j=|j1−j2|

D(j)]U†
j1,j2

where D(j) is the irreducible representation of spin j. The Clebsch-Gordon coefficients describe the change of basis
between two natural bases. The basis of the tensor product representation |j1,m1⟩ ⊗ |j2,m2⟩, where m1 and m2 are
the magnetic quantum numbers. The basis of the irreducible components |j,m⟩, where m = m1 + m2 and j is the
total angular momentum. The relationship is expressed as:

|j,m⟩ =
∑

m1,m2

Cj,m
j1,m1;j2,m2

|j1,m1⟩ ⊗ |j2,m2⟩,

where Cj,m
j1,m1;j2,m2

are the Clebsch-Gordon coefficients. Tables of Clebsch-Gordon coefficients can be found in [21].

• Maybe good idea to comment on some symmetries and recursions of CG values?

B. Computational Complexity of Tensor products

• Write a section here on the computational complexity of computing the tensor product see [22] for inspiration

IX. IRREDUCIBLE REPRESENTATIONS OF THE SYMMETRIC GROUP

The symmetric group on n elements, denoted as Sn, is the set of bijections from the set {1, 2, ..., n} into itself. The
size of the symmetric group |Sn| = n! ∼ exp(−n)nn which grows super-exponentially in n.

A. Symmetric Group Representations

The fundamental (or matrix) representation of Sn is the n× n representation

F (σ)ij =

 1 if i = σ(j)

0 else

The fundamental representation is not in general irreducible. To see this, note that the subspace spanned by the sum
of the Euclidean basis vectors is an invariant subspace. Specifically, we have that

∀σ ∈ Sn, F (σ)[

n∑
i=1

ei] =

n∑
i=1

eσ(i) =

n∑
i=1

ei

Irreducible Representations of Sn are particularly elegant [7]. A classic result in group theory states that irreducible
representations of Sn are indexed by partitions of n. Specifically, for every partition λ ⊢ n there is a unique irreducible
representation of Sn. The structure of irreducible representations of Sn can be understood with the help of Specht
Modules. In order to work with Specht Modules, we introduce Young diagrams and Young tableau.

B. Young Diagrams and Young Tableau

Young diagrams are combinatorial tools used in the study of symmetric groups. They provide a visual way to
describe partitions of integers and play a central role in understanding irreducible representations. AYoung diagram
is a collection of boxes arranged in left-aligned rows, where the number of boxes in each row corresponds to the parts
of a partition λ = (λ1, λ2, . . . , λk) of a positive integer n. A partition λ satisfies:

λ1 ≥ λ2 ≥ · · · ≥ λk > 0, and

k∑
i=1

λi = n
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Here, λ ⊢ n indicates that λ is a partition of n. For example, the partition λ = (4, 2, 1) ⊢ 7 corresponds to the Young
diagram:

For the symmetric group Sn, irreducible representations correspond to partitions of n. Young diagrams provide a
convenient way to label and study these representations. Young diagrams help describe the branching rules when
restricting representations of Sn to Sn−1. A standard Young tableau is a Young diagram where the boxes are
filled with integers 1, 2, . . . , n, such that the numbers increase along each row and the numbers increase down each
column. For example, a standard Young tableau for λ = (3, 2) ⊢ 5 is:

1 2 3

4 5

The number of standard Young tableaux of shape λ is given by the hook-length formula [19], which is central in the
representation theory of symmetric groups.

C. Specht Modules

Specht modules provide a general method for constructing the explict irreducible representations of Sn. Let λ =

(λ1, λ2, ..., λm) ⊢ n be a partition of n with λ1 ≤ λ2 ≤ ... ≤ λm. To each permutation λ| → λ̂, we associate a Young
diagram ??. Once we have a Young tableau, we then define the following subgroups of Sn,

1 2 3

4 5 6

7

8

1 2 3 4 5

6 7 8

9 10

FIG. 9: Canonical Young Tableau: The partition λ = (4, 2, 2) ⊢ 8. The associated canonical Young Tableau λ̂ is
shown in

Pλ = {g ∈ Sn|g preserves the rows of the λ-tableau}
Qλ = {g ∈ Sn|g preserves the columns of the λ-tableau}

Note that Pλ ⊆ Sn and Qλ ⊆ Sn holds, as compositions of elements which preserve rows (or columns) also preserve
rows (or columns). To each of these subgroups we defined the group algebra elements

pλ =
∑
g∈Pλ

g, qλ =
∑
g∈Qλ

sign(g)g

The sub-algebra Vλ = C[Sn]pλqλ forms an irreducible representation of Sn. The dimension of an irreducible of Sn can
be calculated using the hook length formula, [19].

1. Schur Polynomials and Symmetric Functions

As an aside, Young diagrams are closely related to symmetric functions, particularly Schur functions, which play
a significant role in algebraic combinatorics. The Schur function sλ associated with a partition λ is defined combi-
natorially using the tableaux corresponding to λ. The Schur function can be expressed as a determinant involving
complete homogeneous symmetric polynomials hk:

sλ(x1, x2, . . . , xn) = det (hλi−i+j)1≤i,j≤n
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where hk is the complete homogeneous symmetric polynomial of degree k. The Shur functions have many elegant
properties,

Symmetry:∀σ ∈ Sn, sλ(x1, x2, ..., xn) = sλ(xσ(1), xσ(2), ..., xσ(n))

Completeness: The Schur polynomials are a complete basis for all symmetric polynomials

Tensorality:sλ(x1, x2, ..., xn) · sλ(x1, x2, ..., xn) =
∑
ν

cνλ,µsλ(x1, x2, ..., xn) for Littlewood-Richardson constants cνλµ

D. Hook Length Formula

The dimension of an irreducible representation of Sn corresponding to a partition λ can be calculated using the
hook length formula [19]. Specifically, let

λ = (λ1, λ2, . . . , λm) ⊢ n,

where λ is a partition of n, and λi are the parts of the partition, satisfying λ1 ≥ λ2 ≥ · · · ≥ λm > 0 and
∑m

i=1 λi = n.
To compute the dimension of the irreducible representation Vλ, construct the Young diagram of the partition λ.

The Young diagram is a collection of boxes arranged in rows, where the i-th row has λi boxes. For each box in the
Young diagram, its hook length is defined as the number of boxes directly to the right, directly below, or in the same
position, including the box itself. Denote the hook length of a box (i, j) in the diagram as h(i, j). The dimension of
Vλ is then given by:

dim(Vλ) =
n!∏

(i,j)∈λ h(i, j)
(4)

where the product runs over all boxes (i, j) in the Young diagram of λ.

E. Example: Symmetric Group S4

As an example, consider the symmetric group S4. One possible partition of 4 is λ = (2, 2) ⊢ 4, which corresponds
to the Young diagram:

Using the hook length formula:

dim(Vλ) =
4!

3 · 2 · 2 · 1
=

24

12
= 2.

This means the irreducible representation corresponding to the partition λ = (2, 2) ⊢ 4 of S4 has dimension 2.

F. Tensor Products of Irreducible Representations of Sn

Let λ and λ′ be two irreducible representations of Sn, the tensor product of the corresponding irriducibles repre-
sentation will decompose into irriducibles as

Vλ ⊗ Vλ′ = Uλλ′ [
∑
τ⊢n

cτλλ′Vτ ]U
†
λλ′

where Uλλ′ is a unitary change of basis. The integers cτλλ′ are called the Littlewood-Richardson coefficients and count
the number of irreducible τ -representations in the tensor product of λ and λ′. The tensor product coefficients cτλλ′

are generically sparse and the relation

Cτ
λλ′ > 0 =⇒ |dλ − dλ′ | ≤ dτ ≤ dλ + dλ′

holds [19]. Tensor product decomposition’s can be computed diagrammatically using the Littlewood-Richerdson rule.
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1 2

3
⊗ 1 2 3 =

1 2

6 7

FIG. 10: Diagrammatic Computation of Tensor Products of Young Tableau: The partition λ = (4, 2, 2) ⊢ 8. The

associated canonical Young Tableau λ̂ is shown in ...

1. Littlewood–Richardson Rule for Tensor Products in Representations of Symmetric Groups

The Littlewood–Richardson rule is a combinatorial method for determining the multiplicities of irreducible rep-
resentations within the tensor product of two irreducible representations of the symmetric group Sn. Given two
irreducible representations of Sn, corresponding to partitions λ and µ, their tensor product can be decomposed into
a direct sum of irreducible representations:

V λ ⊗ V µ =
⊕
ν

cνλµV
ν (5)

Here, V λ, V µ, and V ν are irreducible representations associated with partitions λ, µ, and ν, respectively, and cνλµ
are non-negative integers known as Littlewood–Richardson coefficients. The Littlewood–Richardson rule provides a
combinatorial procedure to compute the coefficients cνλµ. It involves counting the number of semistandard Young

tableaux of shape ν/λ (the skew Young diagram obtained by removing the boxes of λ from ν) and weight µ that
satisfy specific conditions. Specifically, the entries in the tableau must be weakly increasing across each row, strictly
increasing down each column. and form a reverse lattice word when read from right to left and top to bottom; that is,
in any initial segment of this reading, each integer i appears at least as many times as the integer i+ 1. The number
of such tableaux equals the Littlewood–Richardson coefficient cνλµ.

G. Example: Tensor product of two S3 Irriducibles Representations.

Consider the partitions λ = (2) and µ = (1) of S3. The possible partitions ν of 3 are (3), (2, 1), and (1, 1, 1). To

compute c
(2,1)
(2)(1), we examine the skew shape (2, 1)/(2), which is a single box. A semistandard Young tableau of this

shape with weight (1) is:

1

This tableau satisfies the conditions of the Littlewood–Richardson rule, so c
(2,1)
(2)(1) = 1. Similarly, one can compute

c
(3)
(2)(1) = 1 and c

(1,1,1)
(2)(1) = 0.

H. Irreducible Decomposition of Tensor Product of N Identical Vector Spaces

Let V be a vector space over R or C. In many linear algebra applications, we often work with a vector space W
that is composed of k-fold tensor products of the smaller vector space V such that

W = V ⊗k = V ⊗ V ⊗ ...⊗ V︸ ︷︷ ︸
k−times

where the dimension of the vector space V is d, dimV = d so that the dimension of W is dimW = dk. This
situation arises naturally in dealing with quantum mechanical systems of many identical particles. Tensor product
representations of this form are naturally related to the permutation group. Specifically, let W = V ⊗k be a vector
space that is the k-fold tensor product of V . For each permutation σ ∈ Sk, we define the operator Ŝσ with action on
the tensor product basis via permutation

∀σ ∈ Sk, Ŝσ|i1i2...ik⟩ = |iσ(1)iσ(2)...iσ(k)⟩
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The operators Ŝσ form a unitary reducible representation of the group Sn. Specifically, the permutation representation
will decompose as

(Ŝσ, V
⊗k) ∼=

⊕
λ⊢k

cλ(k,d)λ

with cλ(k,d) counting the muplicity of the irreducible λ representation in (Ŝσ, V
⊗k). The character of the (Ŝσ, V

⊗k)

representation is given by

χ(σ) = Tr[Ŝσ] = df(σ)

where f(σ) is the number of fixed points of the permutation σ. Thus,

cλ(k,d) =
∑
σ∈Sk

χλ(σ)d
f(σ)

where χλ(σ) : Sk → C is the character of the λ irreducible. Suppose that the matrix X commutes with all N -fold
products of unitary matrices

∀U ∈ G, U⊗NX = XU⊗N

holds, where G is either O(d) or U(d). Then the matrix X may be written as

X =
∑
σ∈Sk

cσŜσ

for some complex constants cσ. There are N ! constants cσ, one for each permutation σ in SN . A set of N ! linear
equations for the coefficients cσ can be computed by multiplication by an element Ŝτ , τ ∈ SN and taking traces [25].

1. Example: N = 2 Case

For N = 2, S2
∼= Z2 is isomorphic to the cyclic group of order two. There are two permutation operators, 1 and Ŝ.

The operator Ŝ permutes tensor product indices with Ŝ|ij⟩ = |ji⟩. Note that

Ŝ2 = 1

Thus, Ŝ has eigenvalues ±1. All representations of S2 are one dimensional. There are two irreducible representations,
the trivial and sign representation. The tensor product space then decomposes as

V ⊗ V = [
d(d+ 1)

2
V+]

⊕
[
d(d− 1)

2
]V−

so that the tensor permutation space decomposes into d(d+1)
2 copies of the symmetric space and d(d−1)

2 copies of the
anti-symmetric space. The projection operators into the V+ and V− subspaces are given by

Ŝ+ =
1√
2
(1d×d + Ŝ) Ŝ− =

1√
2
(1d×d − Ŝ)

respectively. The projection operators are normalized to satisfy the relations Ŝ2
± = Ŝ±. Using Young diagrams, the

irreducible representations are representation as the partitions λ ⊢ 2, as shown in 11.

V+
∼= V(2)

∼= 1 2 , V− ∼= V(1,1)
∼=

1

2

FIG. 11: Irreducible Representations of S2 and corresponding Young Diagrams
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1 2 3 4 → 1 2 ⊗ 1 2 ,

1

2

3

4

→
1

2
⊗

1

2
,

1 2

3 4
→ ( 1 2 ⊗ 1 2 ) ⊕ (

1

2
⊗

1

2
)

1 2

3

4

→ ( 1 2 ⊗ 1 2 ) ⊕ ( 1 2 ⊗
1

2
) ⊕ (

1

2
⊗ 1 2 ),

1 2 3

4
→ (

1

2
⊗

1

2
) ⊕ (

1

2
⊗ 1 2 ) ⊕ ( 1 2 ⊗

1

2
)

FIG. 12: Under the group restriction operation of S4 to S2 × S2, The five irreducible representations λ ⊢ 4 of S4

decompose into direct sums of tensor products of S2 irreducible representations.

Character Table of Irreducible Representations of S4

Character e,(size=1) (12),(size=6) (12)(34),(size=3) (123),(size=8) (1234),(size=6)

χ(4) 1 1 1 1 1

χ(1,1,1,1) 1 −1 1 −1 1

χ(2,2) 2 0 2 −1 0

χ(2,1,1) 3 1 −1 0 −1

χ(3,1) 3 −1 −1 0 1

TABLE I: Character Table of S4 for irreducible representations λ ⊢ 4.

2. Example: Tensor Product Rules of S2

The tensor product rules for the group S2 are trivial. Using characters, we have that

V+ ⊗ V+ = V+, V+ ⊗ V− = V−, V− ⊗ V− = V+

so that C++
+ = 1, C+−

− = C+−
− = 1, C−−

+ = 1 and all other tensor product multiplicities are zero.

3. Example: Computing Branching and Induction Rules of S2 × S2 ⊆ S4

There are five irreducible representations of S4. The character table of irriducibles of S4. The group S4 has five
conjugacy classes.
Evaluated on the S2 × S2 subgroup, we have that

χ(4)[(e)(e)] = 1, χ(4)[(12)(e)] = 1, χ(4)[(e)(34)] = 1, χ(4)[(12)(34)] = 1

χ(1,1,1,1)[(e)(e)] = 1, χ(1,1,1,1)[(12)(e)] = −1, χ(1,1,1,1)[(e)(34)] = −1, χ(1,1,1,1)[(12)(34)] = 1

χ(2,2)[(e)(e)] = 2, χ(2,2)[(12)(e)] = 0, χ(2,2)[(e)(12)] = 0, χ(2,2)[(12)(12)] = 2

χ(2,1,1)[(e)(e)] = 3, χ(2,1,1)[(12)(e)] = 1, χ(2,1,1)[(e)(12)] = 1, χ(2,1,1)[(12)(12)] = −1,

χ(3,1)[(e)(e)] = 3, χ(3,1)[(12)(e)] = −1, χ(3,1)[(e)(12)] = −1, χ(3,1)[(12)(12)] = −1,

Upon restriction to the subgroup S2 × S2 we have the following decomposition of S4 irreducible representations,

V(4) → V+ ⊗ V+, V(1,1,1,1) → V− ⊗ V−, , V(2,2) → (V+ ⊗ V+)⊕ (V− ⊗ V−)

V(2,1,1) → (V+ ⊗ V+)⊕ (V+ ⊗ V−)⊕ (V− ⊗ V+), V(3,1) → (V− ⊗ V−)⊕ (V+ ⊗ V−)⊕ (V− ⊗ V+)



26

1 2 3 4 5
1 2 3 4

5

1 2 3

4 5

1 2 3

4

5

1 2

3 4

5

1 2

3

4

5

1

2

3

4

5

FIG. 13: The seven integer partitions of five. Each partition λ ⊢ 5 is in bijective correspondence with a irreducible
representation of S5. The dimensions of the corresponding irreducible representation λ going from left to right are:
1, 1,4,4,5,5,6

This is shown diagrammatically in 13. Thus, the only non-zero branching rules are given by

B++
(4) = 1, B−−

(1,1,1,1) = 1, B++
(2,2) = B−−

(2,2) = 1

B−−
(3,1) = B+−

(3,1) = B−+
(3,1) = 1, B++

(2,1,1,1) = B+−
(2,1,1) = B−+

(2,1,1) = 1

X. SCHUR-WEYL DUALITY

Schur-Weyl Duality is a powerful tool in the representation theory of compact groups [30]. In the literature there
is some ambiguity as to the actual definition of what Schur-Weyl duality entails. Schur-Weyl Duality is sometimes
referred to as the decomposition of the tensor products classical Lie groups. However, Schur-Weyl is actually a
more general idea that can be used to decompose any k-fold tensor product of a representation of a compact group.
Specifically, the k-fold tensor product of a representation of a compact group G forms a representation of both the
group G and the group G × Sk. Using the representation theory of the symmetric group IX, we can decompose the
k-fold tensor product into representation of G and representations of Sk.

A. General Schur-Weyl Duality

LetG be a compact group. Let (ρ, Vρ) be any representation ofG. Consider the k-fold tensor product representation,
(ρ⊗k, V ⊗k

ρ ). This representation also forms a representation of the symmetric group of order k, as

∀σ ∈ Sk, ∀g ∈ G, Sσ [ρ(g)⊗ ρ(g)⊗ ...⊗ ρ(g)]︸ ︷︷ ︸
k−times

= [ρ(g)⊗ ρ(g)⊗ ...⊗ ρ(g)]︸ ︷︷ ︸
k−times

Sσ

so that the G action and Sk action are commutative.

V ⊗k
ρ V ⊗k

ρ

V ⊗k
ρ V ⊗k

ρ

ρ⊗k(g)

Ŝσ Ŝσ

ρ⊗k(g)

FIG. 14: ‘Square’-type commutative diagram for Schur-Weyl duality. The key observation in Schur-Weyl duality is
that the k-fold tensor product action and the tensor permutation representation are commutative. This allows for
definition of G× Sk action on the vector space V ⊗k

ρ . Because of this, (Πk
ρ, V

⊗k
ρ ) forms a representation of the group

G× Sk.
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Let us define the action Πk
ρ on the vector space V ⊗k

ρ as the following

∀g ∈ G, ∀σ ∈ Sk, ∀wi1i2...ik ∈ V ⊗k
ρ , Πk

ρ(g, σ)wi1i2...ik =

d∑
j1=1

d∑
j2=1

...

d∑
jk=1

ρ(g)iσ(1)j1ρ(g)iσ(2)j2 ...ρ(g)iσ(k)jkwj1j2...jk

Note that this action is well defined and can be performed by matrix multiplication followed by permutation or
permutation followed by matrix multiplication. For this reason, (Πk

ρ, V
⊗k) is a well defined representation of the group

G× Sk. The representation (Πk
ρ, V

⊗k
ρ ) is in general not reducible and will decompose into irreducible representations

of G×Sk. Irreducible representations of G×Sk are tensor products of irreducible representations of G and irreducible
representations of Sk. Thus, we have the following decomposition,

(Πk
ρ, V

⊗k
ρ ) ∼=

⊕
τ∈Ĝ

⊕
λ⊢k

mkτλ
ρ (τ, Vτ )⊗ (λ, Vλ)

where mkτλ
ρ are integers counting the number of copies of the (τ, Vτ ) ⊗ (λ, Vλ) irreducible in (Πk

ρ, V
⊗k
ρ ). Thus, the

tensor product space decomposes into vector subspaces that are characterized by their transformation properties based
on G action and tensor index permutations.

B. Unitary Schur-Weyl Duality

Let us apply the more general Schur-Weyl formalism to the case of the unitary group U(d). Irreducible repre-
sentations of U(d) are countably infinite and are in one-to-one correspondence with integer partitions [30, 34]. Let
λ = (λ1, λ2, ..., λm) be a partition with λ1 ≥ λ2 ≥ ... ≥ λm. The irreducible representation of U(d) associated to the
partition λ will be denoted as (Uλ, Vλ). Let (U1,Cd) be the fundamental d-dimensional representation of U(d) defined
as the λ = (1) partition,

Ud = { U | U†U = Id = UU† }

Consider the k-fold tensor product decomposition,

(Cd)⊗k =
⊕

λ⊢(k,d)

Vλ ⊗ λ

where λ ⊢ (k, d) denotes partitions of the integer k with no more than d summands, i.e.

λ ⊢ (k, d) =⇒ λ = (λ1, λ2, ..., λm), s.t λ1 ≥ λ2 ≥ ... ≥ λm s.t.
∑

λi = k and m ≤ d

A celebrated theorem of Weyl [30] states that the representations (Uλ, Vλ) exhaust all representations of the d-
dimensional unitary group U(d).

1. Unitary Group Tensor Product Rules

For a complete discussion of diagrammatic methods for computing tensor products of irreducible representations of
the unitary group, please see [12]. We will be interested in tensor products of irreducible representations of U(d). Let
λ and λ′ be two partitions. Let Vλ and Vλ′ be the corresponding irreducible representations of U(d). Then, consider
the tensor product

Vλ ⊗ Vλ′ ∼=
∞⊕

n=1

⊕
µ⊢n

mµ
λλ′Vµ

so that the index µ ranges over all integer partitions and mµ
λλ′ are integers that count the muplicity of the irreducible

representation Vµ in the tensor product Vλ ⊗ Vλ′ . Using Schur-Weyl Duality, we can derive an exact expression for
tensor product rules mµ

λλ′ of the unitary group in terms of the branching rules of the symmetric group. To begin,
consider the trivial relation

(Cd)⊗k ⊗ (Cd)⊗k′
= (Cd)⊗(k+k′)
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for any integers k and k′. Then, using the vector space decomposition in the Schur-Weyl duality, we have an
isomorphism of vector spaces

[
⊕

λ⊢(k,d)

Vλ ⊗ λ]

︸ ︷︷ ︸
(Cd)k

⊗ [
⊕

λ′⊢(k′,d)

Vλ′ ⊗ λ′]

︸ ︷︷ ︸
(Cd)k′

∼= [
⊕

µ⊢(k+k′,d)

Vµ ⊗ µ]

︸ ︷︷ ︸
(Cd)k+k′

This is a representation of the group U(d) × Sk × Sk′ . Expanding out the tensor product of the left hand side, we
have that ⊕

λ⊢(k,d)

⊕
λ′⊢(k′,d)

[Vλ ⊗ Vλ′ ]⊗ (λ⊗ λ′) =
⊕
µ

⊕
λ⊢(k,d)

⊕
λ′⊢(k′,d)

mµ
λλ′Vµ ⊗ (λ⊗ λ′)

Now, consider the group restriction of the left side from Sk+k′ to the subgroup Sk × Sk′ ⊆ Sk+k′ . Let µ ⊢ (k+ k′) be
a irreducible representation of Sk+k′ . Under the group restriction

Res
Sk+k′

Sk×Sk′ [µ] =
⊕
λ⊢k

⊕
λ′⊢k′

Bλλ′

µ (λ⊗ λ′)

where Bλλ′

µ are the branching rules which count how many copies of the irreducible λ ⊗ λ′ are contained in the
restriction of µ. Branching rules for the symmetric group have been thoroughly studied [19]. Under group restriction
from Sk+k′ → Sk × Sk′ , the isomorphism of vector spaces becomes an isomorphism of group representations. Under
restriction ⊕

µ⊢(k+k′,d)

Vµ ⊗ µ →
⊕

µ⊢(k+k′,d)

⊕
τ⊢k

⊕
τ ′⊢k′

Bµ
ττ ′Vµ ⊗ [τ ⊗ τ ′]

Two representations are equivalent if and only if they have identical decomposition of irriducibles. This relation can
only hold if, for any λ ⊢ k and λ′ ⊢ k′ the relation

Vλ ⊗ Vλ′ =
⊕

µ⊢(k+k′)

Bµ
λλ′Vµ

holds. Thus, the tensor product of the λ and λ′ irreducibles of U(d) are completely determined by the branching rules
of irreducible representations of the symmetric group. Branching rules of the symmetric group have been thoroughly
studied in representation theory [19].

XI. CHARACTERIZATION OF LIE ALGEBRA REPRESENTATIONS

The continuous structure of Lie groups allows for classification of their algebraic structure. In this section, we
discuss the Killing form, Cartan sub-algebra and Weyl group/chamber. The Weyl group and Weyl chambers encode
the symmetry of the root system, which is instrumental in understanding the geometry and representation theory
of the group. The Weyl integration formula and the Harish-Chandra integral formula provide powerful tools for
integrating functions over the group, linking harmonic analysis to representation theory. Using Dynkin diagrams, all
compact Lie algebras can be classified into a finite list of types, giving a complete understanding of their structure
and symmetries.

A. Killing Form

The Killing form is the first tool in the classification of Lie algebra representations. The Killing form K is a
symmetric bi-linear form on a Lie algebra g. Specifically, K is defined as

K(X,Y ) = Tr[ad(X)ad(Y )]

Using the cyclic properties of the trace,

K(X, [Z, Y ]) +K([Z,X], Y ) = 0 (6)



29

The Killing form is essentially unique. It is (up to multiplication) the only inner product satisfying the property 6.
The Killing form can be written in terms of the structure constants fk

ij as

K(AiXi, B
jXj) =

∑
k

fk
ijf

k
jiA

iBj

So that as an element of g⋆ ⊗ g⋆ the Killing form is given by

K =
∑

km=1

fk
imfm

jke
i ⊗ ej

where g⋆ = span[ei]ri=1 is the dual space of g. Importantly, the Killing form is an Ad-invariant inner product,

∀g ∈ G, K(X,Y ) = K(AdgX,AdgY )

B. Cartan Sub-Algebra

A Cartan sub-algebra h is a maximal commuting set of elements of g. A Cartan sub-algebra is closed under
commutation and satisfies

∀x, y ∈ h, [x, y] = 0

The dimensions of dim h = r is called the rank of g. Let {hi}ri=1 be a basis of h. The remaining elements of g will be
denoted as Eα where

∀h ∈ h, [hi, Eα] = αiEα

so that the Eα are eigenvectors of the hi operators. The vectors α = (α1, α2, ..., αr) are called roots. The operator
Eα is called the ladder operator associated to the root α. Let Φ denote all the roots of g. The Lie algebra g then
decomposes as a direct sum of the Cartan sub-algebra and the roots

g = h
⊕
α∈Φ

Eα

Root systems have a reflection symmetry. Specifically, if α is a root, then −α is also a root as

[hi, Eα] = αiEα =⇒ [hi, (Eα)†] = −αi(Eα)†

Using the Jacobi Identity, we have that

∀h ∈ h, [hi, [Eα, Eβ ]] = (α+ β)iEα+β

thus, the commutator of two roots satisfies

[Eα, Eβ ] = Nα,βE
α+β if α ̸= −β

[Eα, E−α] =

r∑
i=1

Ci(α)h
i

where Nα,β and Ci(α) are constants. The constant Ci(α) can be determined using the Jacobi relation. We have that

[hi, [Eα, E−α]] + [Eα, [E−α, hi]] + [E−α, [hi, Eα]] = 0

Using the definition of roots, we have that

[hi, [Eα, E−α]] + 2αi[Eα, E−α] = 0

Thus, [Eα, E−α] must be given by

[Eα, E−α] = C(α)

r∑
i=1

αihi
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The root α(h) : h → C is the eigenvector of x in [h, ·]. Note that each root α : h → C can be viewed as an element of
the dual space h⋆ of h. An orientation on a root system α is a choice of roots Φ+ ⊂ Φ such that either α or −α is
contained in Φ+, but not both. If the Lie algebra g has an inner product, we can identify h⋆ with h. We can identify
the dual h⋆ with h via the canonical isomorphism J : h⋆ → h

J [x](y) = K(x, y)

where K(·, ·) is the Killing form on g. The Killing form induces a inner product on the root space. Let α and β be
roots. We can then define the inner product on roots

(α, β) = K(

r∑
i=1

αihi,

r∑
i=1

βihi) =

r∑
i=1

αiβi

The Killing form then defines a inner product in the dual space h⋆ via

(α, β) = K(α · h, β · h)

C. Weights

A weight vector λ = (λ1, λ2, ..., λr) is a basis such that

∀hi, hi|λ⟩ = λi|λ⟩

Using the commutation relations [hi, Eα] = αiEα, we have that

hi[Eα|λ⟩] = (λi + αi)[Eα|λ⟩]

so that the operator Eα shifts the weight vector λ,

Eα|λ⟩ ∝ |λ+ α⟩

The operator Eα is said to terminate the weight vector λ is there exists an integer p ∈ Z such that

(Eα)p|λ⟩ = 0

For finite representations, all the root operators Eα must terminate each weight vector |λ⟩. Thus, we must have that

2(α, λ)

|α|2
∈ Z

This is called the Cartan relation. The Cartan relation forces the root and weight space to satisfy a set of natural
geometric relations, allowing for a complete classification of simple Lie algebras.

D. Structures of Root Systems

The rank of the Cartan sub-algebra h is in general much less than the dimension of the full Lie algebra g. Let
{βi}ri=1 be a basis of h⋆. Then, any root may be expanded as

∀α ∈ Φ, α =

r∑
i=1

niβi

where ni are integers. Roots with the first non-zero ni > 0 are called positive roots and denoted as Φ+. A simple
root is a root that cannot be written as the sum of two positive roots. The set of simple roots is denoted as ∆. There
are exactly r simple roots. For any two simple roots, we define the Cartan matrix

αi, αj ∈ ∆, Aij =
2⟨αi, αj⟩
|αj |2

To each root α ∈ Φ, we associate a dual root α∧, defined as

α∧ =
2α

|α|2

Using this definition, the Cartan matrix can be written as

Aij = ⟨αi, α
∧
j ⟩
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1. Fundamental Weights

The fundamental weights are defined as the normalized coroots with

(ωi, α
∧
j ) = δij

Any weight vector can be expanded in the fundamental weight basis as

λ =

r∑
i=1

λiωi

where λi = (λ, α∧
i ) are called the Dynkin labels of λ. The Weyl vector ρ is defined as the sum of all fundamental

weights

ρ =

r∑
i=1

ωi

E. Weyl Group

Consider the hyperplane defined by the equation

Hα = { h | ⟨α, h⟩ > 0 }

For any root α ∈ Φ, we can reflect around the hyperplane defined by Hα. The set of all reflections forms a group.
Which is called the Weyl group W . Specifically, for any two roots β and α, the Weyl reflection of β with respect to
α is given by

sαβ = β − (α∧, β)α

Because roots and weights live in the same space, the Weyl group also acts on weight vectors |λ⟩ via

sα|λ⟩ = |λ⟩ − (α∧, λ)|α⟩

The Weyl group action on both weights and roots is unitary,

Roots: ∀w ∈ W, ∀α, α′ ∈ Φ (α, α′) = (wα,wα′)

Weights: ∀w ∈ W, (λ, λ′) = (wλ,wλ′)

It will be useful to define the Fredenhall operator Dρ as

Dρ =
∏

α∈Φ+

(exp(α/2)− exp(−α/2))

using the definition of the Weyl group, this can be written in terms of the Weyl vector as

Dρ =
∑
w∈W

η(w) exp(wρ)

where η(w) : W → ±1 is the sign function of W .

F. Weyl Chamber

The action of the Weyl group W on the root space splits the root space into |W | isomorphic subspaces called
chambers. The Weyl chamber defined as

Wc = { λ | ∀w ∈ W, ∀αi ∈ ∆ (wλ, αi) ≥ 0 }

The discriminant function δg(x) : h → C is defined as

∀x ∈ h, δg(x) =
∏

α∈Φ+

⟨α, x⟩

which is the products of the inner product of the Cartan elementx ∈ h with all positive roots.
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G. Highest Weight Representations

A highest weight vector |λ⟩ is a weight that is decimated by each positive root,

∀α ∈ Φ+, Eα|λ⟩ = 0

There is a bijection between highest weight representations and irreducible Lie algebra representations. Specifically,
from a highest weight vector |λ⟩, we can form the descendent states

∀αi ∈ Φ+, E−α1E−α2 ...E−αm |λ⟩

Descent states form representations of the Lie algebra g. The set of all descendent states of the highest weight vector
|λ⟩ is denoted as Lλ.

The descendent states Lλ generate representation of the Lie algebra G. Specifically,

Cartan Subgroup: exp(

r∑
i=1

θih
i)|λ⟩ = exp(

r∑
i=1

θiλ
i)|λ′⟩

Lie Algebra: exp(tEα)|λ′⟩ ∈ Lλ

Thus, highest weight states generate representations of Lie groups. However, we have to keep track of both the
multiplicities of the states in Lλ and be able to generate a basis for Lλ. Define the formal exponential exp(µ) as a
placeholder, where for all weights λ and λ′,

exp(λ+ λ′) = exp(λ) exp(λ′)

exp(λ)(λ′) = exp((λ, λ′))

The character of the highest weight representation |λ⟩ is then defined as

χλ =
∑

λ′∈Lλ

Multλ[λ
′] exp(λ′)

where the integer Multλ[λ
′] counties the number of copies of the descendent state |λ′⟩ in the |λ⟩ highest weight

representation. In general, calculating the Lie algebra characters is difficult. However, it can be show that the
Freudenthal operator satisfies

Dρχλ = Dρ+λ

Thus, we have that

χλ =
Dρ+λ

Dρ
(7)

This 7 is called the Weyl character formula. Using 7, the dimension of a highest weight representation |λ⟩ is given by

dλ = dimλ =
∏

α∈Φ+

(ρ+ λ, α)

(ρ, α)

XII. HARMONIC ANALYSIS ON SEMI-SIMPLE LIE GROUPS

Just as Fourier analysis can be generalized to non-commutative harmonic using representation theory, additional
results can be proven when working with semi-simple Lie groups.

• I wonder if there is a way to apply this to machine learning. Specifically, if I have a convolution on a group can
I evaluate it quickly using on of these integral formulae?

XIII. WEYL INTEGRATION FORMULA

Heuristically, the Weyl formula allows one to evaluate integrals on compact non-commutative groups in terms of
integrals over the largest commutative subgroup of G. This reduction is particularly useful in simplifying computations
involving characters and representations.
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A. Statement of the Formula

Let G be a compact connected Lie group, and let T be a maximal torus in G. The Weyl Integration Formula
states that for any continuous class function f : G → C, the integral of f over G with respect to the normalized Haar
measure dg can be expressed as:

∫
G

f(g) dg =
1

|W |

∫
T

f(t) |∆(t)|2 dt

Here, |W | denotes the order of the Weyl group W = NG(T )/T , where NG(T ) is the normalizer of T in G. ∆(t) is
the Weyl denominator, defined as:

∆(t) =
∏
α>0

(
eα(t)/2 − e−α(t)/2

)
where the product runs over the positive roots α of the Lie algebra of G relative to T . This function encapsulates the
contribution of the root system to the integration measure.

B. Weyl Integration Formula in SO(3)

We briefly review the Weyl Integration formula in SO(3)[? ]. Let f : SO(3) → C be a complex valued function on
SO(3) that is normal with f(hgh−1) = f(g) for all h, g ∈ SO(3). The Weyl formula in SO(3) states that∫

g∈SO(3)

dg f(g) =

∫ 2π

0

dϕ [1− cos(ϕ)]f(gϕ)

where gϕ is a rotation of angle ϕ about the z-axis. Thus, using the Weyl Integration Formula in SO(3) in ??, we have
that

Kℓ =
1

2ℓ+ 1

∫ 2π

0

dϕ [1− cos(ϕ)]h(||σ(gϕ)− Idσ
||)χℓ(gϕ)

Now, the characters of SO(3) representations are given by

χℓ(gϕ) =
sin((ℓ+ 1

2 )ϕ)

sin( 12ϕ)
=

ℓ∑
k=−ℓ

exp(ikϕ)

and the character of the ℓ-th SO(3) irreducible evaluated on a rotation of angle ϕ about the z-axis is the Dirichlet
kernel of order ℓ evaluated at ϕ.

C. Weyl Integration Formula in SO(n)

We use the Weyl Integration formula in SO(n) [? ], which states that∫
SO(2n)

f(g) dg =
1

2n−1(n!)

∫
Tn

f
(
diag(t1, . . . , tn, t

−1
n , . . . , t−1

1 )
)

×
∏
i<j

{
|ti − tj |2|ti − t−1

j |2
}
dt1 · · · dtn

and for the odd case ∫
SO(2n+1)

f(g) dg =
1

2nn!

∫
Tn

f
(
diag(t1, . . . , tn, 1, t

−1
n , . . . , t−1

1 )
)

×
∏
i<j

{
|ti − tj |2|ti − t−1

j |2
}∏

i

|ti − 1|2 dt1 · · · dtn
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where Tn is the n-dimensional torus, and each ti is a complex number of modulus 1.
In the case of 2n = 4, we have

|t1 − t2|2 = |eiθ − eiϕ|2 = 2− 2 cos(θ − ϕ) = 4 sin2
(
θ − ϕ

2

)
,

|t1 − t−1
2 |2 = |eiθ − e−iϕ|2 = 2− 2 cos(θ + ϕ) = 4 sin2

(
θ + ϕ

2

)
.

Applying them to the 2n case, we have∫
SO(4)

f(g) dg =
1

π2

∫ 2π

0

∫ 2π

0

f(gθ,ϕ)

[
sin2

(
θ − ϕ

2

)
sin2

(
θ + ϕ

2

)]
dθdϕ (8)

Now, the characters of SO(4) representations are given by

χ
SO(4)
(j1,j2)

(θ, ϕ) =
sin

(
(2j1+1)(θ+ϕ)

2

)
sin

(
(2j2+1)(θ−ϕ)

2

)
sin

(
θ+ϕ
2

)
sin

(
θ−ϕ
2

) (9)

where j1 and j2 are the angular momentum quantum numbers associated with the first and second SU(2) factors.

XIV. HARISH-CHANDRA INTEGRAL FORMULA

The Harish-Chandra integrals were discovered by Harish-Chandra in his development of the theory of harmonic
analysis on semi-simple Lie groups. The HCIZ integrals [18] are a special case of the more general Harish-Chandra
formula. Let G be a semi-simple group. Let Ad : G → Aut(g) be the adjoint operator on G. Let W be the Weyl group
of G. Let ⟨·, ·⟩ : g × g → C be any Ad-invariant inner product on g. Then, the Harish-Chandra formula evaluates
integrals of the form ∫

g∈G

dg exp(⟨Adg(x), y⟩)

in terms of summations over the the Weyl group W . Specifically,∫
g∈G

dg exp(⟨Adg(x), y⟩) =
1

Vol(W )

∑
w∈W

sign(w) exp(⟨w(x), y⟩)

where w(x) is the lattice vector of x on W and sign : W → ±1 is the sign function.

XV. BOCHNER THEOREMS

Bochner’s theorem is a celebrated result in harmonic analysis [3, 13]. Modifications of Bochner’s theorem have been
used in high dimensional statistics and dimensionality reduction [1, 27]. The Bochner theorem on abelian groups was
used in [27] to construct the Fourier random features. We review Bochner theorem on abelian groups, as stated in
[27].

A. Bochner’s Theorem on Abelian Groups

Let G be an Abelian group. All irreducible representations of G are one dimensional. The set of irreducible
representations of G, denoted as Ĝ, is again a group. The set of irreducible representations of the dual group Ĝ is

isomorphic to G, so that
ˆ̂
G = G This observation forms the basis of Pontryagin duality [26]. Bochner’s theorem on

abelian groups states the following: Let G be locally compact abelian group. Let f : G → R be a normalized function
on G,

∫
g∈G

dg f(g) = 1 which is positive definite, so that

∀g1, g2, ..., gk ∈ G, ∀v1, v2, ..., vk ∈ C
k∑

ij=1

f(g−1
i gj)v̄ivj ≥ 0
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Then, there exists a probability measure dµf on the dual group Ĝ such that

f(g) =

∫
ω∈Ĝ

dµf (ω) ω(g)

Thus, normalized functions on G have positive definite measure on the the Pontryagin dual Ĝ. Any positive definite
normalized left-invariant function f(g1, g2) = f(hg1, hg2) can then be written as

f(g1, g2) = f(g−1
1 g2, e) =

∫
ω∈Ĝ

dµf (ω) ω(g
−1
1 g2) =

∫
ω∈Ĝ

dµf (ω) ω(g
−1
1 )ω(g2)

Then, using the positively of the measure dµf (ω), we can write this as

f(g1, g2) = f(g−1
2 g1, e) = Eω∼µf

[ω(g−1
2 )ω(g1)]

which is the random features expansion for f(·, ·). Because of this, random features for kernels can be constructed by

sampling from the probability measure µf on Ĝ. This observation was used in [27] to construct the random Fourier
features, and is the basis of all random features methods. However, this version XVA of Bochner’s theorem only
holds for functions f defined on a abelian group G. What if we have a function f that is defined on a homogeneous
space X = G/H of a non-commutative group G? This is not an academic question: The softmax kernel in attention
is defined on Rd which is a homogeneous space of the non-commutative group E(d) = O(d)⋊ Rd. Can we develop a
analogy for Bochner’s theorem on homogeneous spaces of non-commutative groups?

B. Bochner’s Theorem on Compact Groups

Bochner proved an additional related theorem for compact groups [2]. Specifically, let G be a compact group, not
necessarily non-commutative. Let f : G × G → C be a left G-invariant f(g1, g2) = f(hg1, hg2), positive definite
function on G that satisfies following property:

∀v1, v2, ..., vk ∈ C, ∀g1, g2, ..., gn ∈ G,

k∑
ij=1

viv̄jf(gi, gj) ≥ 0 (10)

Consider the Fourier expansion of f ,

f(g1, g2) = f(g−1
2 g1, e) =

∑
g∈Ĝ

dρTr[f̂
ρρ(g−1

1 g2)]

Then, Bochner’s theorem [2] states that each of the matrix expansion coefficients f̂ρ are positive definite, f̂ρ ≽ 0.

1. Non-Commutative Random Features

We can use Bochner’s theorem [2] on compact groups to construct random features approximations. Specifically,

Each of the f̂ρ matrices can be diagonlized as f̂ρ = UρΛρ(Uρ)† where Λρ is a diagonal matrix with positive semi-
definite entries. Bochners theorem on compact groups allows us to write positive definite functions on compact groups
as expectations of random features. Specifically, suppose that f : G×G → R is a normalized left G-invariant positive
definite function satisfying 10. Then, using Bochner’s theorem on compact groups, we may write

f(g1, g2) = f(g−1
2 g1, e) =

∑
ρ∈Ĝ

dρTr[U
ρΛρ(Uρ)†ρ(g−1

1 g2)]

Thus, we may write

f(g−1
2 g1, e) =

∑
ρ∈Ĝ

dρTr[ρ(g1)U
ρΛρ(Uρ)†ρ(g−1

2 )]
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If we define a set of dρ vectors, each of dimension dρ with

∀ij ∈ {1, 2, ..., dρ}, Φρ
i (g)j =

√
dρK̂ρ

dρ∑
k=1

Ūρ
ikρ(g)kj

Then, we have that

f(g1, g2) =
∑
ρ∈Ĝ

dρ∑
i=1

Φρ
i (g)

TΦρ
i (g)

Thus, the positivity of f̂ρ guaranteed by Bochner’s theorem allows for a random features expansion of any positive
definite function on compact groups. On compact groups we don’t even need random features. Specifically, we can
define the deterministic vector

Φ(g) = Concatρ∈Ĝ[Concat1≤m≤dρ
[
√

dρKρUρ
mρ(g)]]

then,

∀g1, g2 ∈ G, K(g1, g2) = Φ(g1)
TΦ(g2)

holds exactly. For compact Lie groups, this sum will be infinite and must be truncated at some maximum harmonic
ℓ,

Φℓ(g) = Concat
dρ≤ℓ

ρ∈Ĝ
[Concat1≤m≤dρ [

√
dρKρUρ

mρ(g)]]

The error in this truncation is highly controlled. Specifically, using the Parsifal-Plancheral theorem VIC,

||K − ΦT
ℓ Φℓ||L2[G] =

∑
ρ∈Ĝ,dρ>ℓ

d2ρ||K̂ρ||2F

so the validity of the approximation is determined by how quickly the Fourier coefficients K̂ℓ decay to zero.

2. Example: Non-Commutative Random Features on G

Let σ ∈ Ĝ be an irreducible representation. Consider the F -norm kernel of the σ representation,

Kσ(g1, g2) = ||σ(g1)− σ(g2)||2F

The Fourier coefficients are given by

K̂ρ
σ = δρσK̂

σIdσ

where K̂ρ ∈ R+. For this choice of kernel function, the Fourier matrix K̂ρ
σ is proportional to the identity when ρ = σ

and zero otherwise. The random features decomposition is then

∀g ∈ G, Φρ
ω(g)i =

√
dρδ

ρ
σσ(g)iω

where the index ω ∈ {1, 2, ..., dσ} is chosen uniformly at random. Note that, independent of the random variable ω,

∀h, g ∈ G, Φρ
ω(h · g)i =

dρ∑
j=1

ρ(h)ijΦ
ρ
ω(g)j

so that independent of the random variable ω, Φρ
ω(g)i transforms in the ρ representation of G.
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C. Bochner’s Theorem on Homogeneous Spaces of Compact Groups

The results of XVB can be easily generalized to homogeneous spaces of compact groups. Let G be a compact
group and let H ⊆ G be a subgroup of G. Let X = G/H be a homogeneous space of G. Suppose that f is a positive
definite, left G-invariant, f(gx, gy) = f(x, y) normalized function on X ×X so that

∫
x,y∈X

dxdy f(x, y) = 1 and

∀v1, v2, ..., vk ∈ C, ∀x1, x2, ..., xk ∈ X,

k∑
j=1

viv̄jf(xi, xj) ≥ 0

Then, using a result of [20], we may expand f as

f(x, y) =
∑
ρ∈Ĝ

Tr[f̂ρρ([g(y)−1g(x)]−1)]

where the coefficients f̂ρ have additional sparsity constraints (see Proposition 1 in [20] ) and g(x) is theG representative

of x ∈ X = G/H. Again, applying Bochner’s Theorem on Compact Groups XVB, each of the matrices f̂ρ ≽ 0 is
positive semi-definite.

XVI. BEYOND COMPACT GROUPS: REPRESENTATION THEORY ON LOCALLY COMPACT
GROUPS

Compact groups always have irreducible representations of finite dimension. Locally compact groups do not have to
satisfy this property. Specifically, locally compact groups may have irreducible representations that live in a Hilbert
space of infinite dimensions. Hilbert spaces [11] are generalizations of finite dimensional vector spaces to vector spaces
that may be uncountably infinite-dimensional. Formally, a Hilbert space is a vector space V equipped with an inner
product ⟨·, ·⟩ : V × V → C such that the (⟨·, ·⟩, V ) is a complete metric space [11]. Examples of Hilbert spaces are
square integrable function spaces with inner product,

⟨f, g⟩ =
∫

dx f̄(x)g(x)

Locally compact groups have unitary irreducible representations Ĝ that carry both point and continuous indices.
Fortunately, locally compact groups behave very similar to compact groups. Let H be a Hilbert space. A unitary Lie
representation of (ρ,H) is a representation such that

∀h, k ∈ H, g → ⟨h|ρ(g)|k⟩

is a continuous function of g. Locally compact groups, although not compact, satisfy the following key property: the
Gel’fand–Raikov theorem [32] then states that points of G are separated by irreducible unitary representations of G,
i.e. for any two group elements g, g′ ∈ G, there exist a unitary Lie representation (ρ,H) such that

ρ(g) ̸= ρ(g′)

Thus, the matrix elements ⟨h|ρ(g)|k⟩ are dense in the space of square integrable functions. In other words, for any
compact subset of the group, if f ∈ C then there is an expansion of f(g) in terms of the matrix elements ⟨h|ρ(g)|k⟩.
The actual statement of Gel’fand-Raikov [32] is “For every locally compact group, there exists a complete system
of irreducible unitary representations.” It should also be noted that the Parseval-Plancheral theorem can also be
generalized to locally compact groups [28]. Using the Gel’fand-Raikov theorem [32], the set of matrix elements of
unitary irreducible representations is dense in the space of square-integrable functions on a locally compact group.
Harmonic functions are defined as the overlap of the irreducible representation ℓ matrix elements |ℓk⟩ in the position
basis as,

∀x ∈ X, Yℓ(x)k = ⟨x|ℓk⟩

where |x⟩ is the position ket. In general, harmonics have an index ρ that is discrete and an index k that is continuous.
The harmonics are orthogonal in both the point and continuous index,∫

x∈X

dx Ykρ(x)Yk′τ (x) = δρσδ
(d)(k − k′)
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where δ(d)(x) is the delta function in d-dimensions. Furthermore, the harmonics form a complete basis of L2[X], so
that

∀f ∈ L2[X], f(x) =
∑
ρ

∫
dk f̂ρ(k)Yρ,k(x)

The Fourier coefficients are given by

f̂ρ(k) =

∫
x∈X

dx f(x)Yρ,k(x)

where the Fourier coefficients f̂ρ(k) carry discrete index ρ and continuous index k.
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Appendix A: Representation Theory of Unitary Group U(d)

The representation theory of the group U(d) was worked out in the early 1900s by Jacobi, Schur and Weyl, among
others. The representation theory of the group U(d) is especially elegant and is intimately related to the representation
theory of the symmetric group. The unitary group U(d) is both semi-simple and compact so the set of irreducible
representations of U(d) are countably infinite. Let λ = (λ1, λ2, ..., λm) be an integer partition with λ1 ≥ λ2 ≥ ... ≥ λm.
Characters of irreducible representations are given by

sλ(z1, z2, ..., zm) = χλ(z) : (C
×)m → C

where the sλ are called called Schur functions. Define the function

aλ1,λ2,...,λm(z1, z2, ..., zm) = det


zλ1+m−1
1 zλ1+m−1

2 ... zλ1+m−1
n

zλ2+m−2
1 zλ2+m−2

2 ... zλ2+m−2
n

... ... ... ...

zλn
1 zλn

2 ... zλn
n


The Schur function is the defined by

sλ(z1, z2, ..., zm) =
aλ(z1, z2, ..., zm)

∆(z1, z2, ..., zm)

where ∆(z) is the Vandermode determinant.

Appendix B: Multi-Linear Algebra

We briefly review some multi-linear algebra concepts and operations on tensor product spaces. We specifically
discuss partial transpose and partial conjugation, which are some standard tools in quantum information theory [24].

1. Partial Trace

The partial trace is a standard tool in quantum information theory [24]. Let H = HA ⊗ HB be a Hilbert space
composed of the HA and HB Hilbert spaces. Let O be an operator defined on W . The partial trace of an operator
on the HA or HB subspace is then defined as

O(A) = TrB [O], O(B) = TrA[O]

respectively, where the matrix elements of the partially traced operators are defined as

O
(A)
ij =

dB∑
k=1

Oik,jk, O
(B)
ij =

dA∑
k=1

Oki,kj

An operator O is said to be separable if O = OA ⊗OB factorizes. Partial traces of separable operators satisfy

O(A) = TrB [O] = Tr[OB ]OA, O(B) = TrA[O] = Tr[OA]OB

A generic operator is not separable. However, via the operator-Schmidt decomposition.

Theorem 2 (Operator Schmidt-Decomposition). Let O be an operator defined on the V ⊗ V tensor product space.
The operator O can always be written as

O =

NO∑
ℓ=1

pℓAℓ ⊗Bℓ

where pℓ are positive real numbers and the operators Aℓ and Bℓ are orthogonal on the V subspaces,

Tr[A†
ℓAℓ′ ] = δℓℓ′ = Tr[B†

ℓBℓ′ ]

the integer NO (the rank of the matrix) counts the minimum number of tensor product operators needed to decompose
O. NO is called the Schmidt number of the operator O.
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The partial trace operation satisfies a uniqueness property.

Theorem 3 ( Uniqueness of Partial Trace ). The partial trace is the unique linear map

TrB : L(A⊗B) → L(A) (B1)

that satisfies the property

∀HB ∈ L(B), ∀HA ∈ L(A), TrB [HA ⊗HB ] = Tr[HB ]HA

2. Partial Transpose and Partial Conjugation

Let V be a vector space over C of dimension d. Let V ⊗ V be the vector space which is a tensor product of V with
itself. The partial transpose and partial conjugate are often used tools in quantum information theory [23, 33].

a. Partial Transpose

Let |ij⟩ be a set of basis elements of V ⊗ V . We will denote P1 as the partial transpose on the first copy of the V
subspace and P2 as the partial transpose on the second copy of the V subspace. Using Bra-Ket notation, We have
that,

⟨ij|XP1 |kℓ⟩ = ⟨kj|X|iℓ⟩ ⟨ij|XP2 |kℓ⟩ = ⟨iℓ|X|kj⟩

The action of P1 and P2 is commutative. The action of P1 followed by P2 (or vise versa) returns the matrix
transpose. For any matrix X on V ⊗ V ,

(XP1)P2 = XT = (XP2)P1

A separable operator is one that can be written as the tensor product of two operators. Let X be a separable
operator with X = X1 ⊗X2. Then the partial transpose of the operator X on the i-th tensor product subspace Pi is
defined as

XP1 = XT
1 ⊗X2 XP2 = X1 ⊗XT

2

Any matrix X on V ⊗ V can always be written as a sum of separable operators (Need a Cite here)

X =
∑

X
(1)
i ⊗X

(2)
i

and the partial transpose of X given by

XP1 =
∑

(X
(1)
i )T ⊗X

(2)
i XP2 =

∑
X

(1)
i ⊗ (X

(2)
i )T

The transpose of a matrix satisfies the property,

(XY )T = Y TXT

A similar rule holds for the partial transpose. We have that

(XY )P1 = (Y TXT )P2 (XY )P2 = (Y TXT )P1

If X = X1 ⊗X2 is a separable operator, this identity can be further simplified. We have that,

(XY )P1 = (1d ⊗X2)Y
P1(XT

1 ⊗ 1d) (Y X)P1 = (XT
1 ⊗ 1d)Y

P1(1d ⊗X2)
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b. Partial Conjugation

Partial Conjugation is the complex version of Partial Transposition. Let X be a separable operator with X =
X1 ⊗X2. Then the partial conjugate of the operator X on the i-th tensor product subspace Ci is defined as

XC1 = X†
1 ⊗X2 XC2 = X1 ⊗X†

2

Any matrix X on V ⊗ V can always be written as a sum of separable operators

X =
∑

X
(1)
i ⊗X

(2)
i

and the partial conjugate of X given by

XC1 =
∑

(X
(1)
i )† ⊗X

(2)
i XC2 =

∑
X

(1)
i ⊗ (X

(2)
i )†

The action of C1 and C2 is commutative. The action of C1 followed by C2 (or vise versa) returns the matrix conjugate.
For any matrix X on V ⊗ V ,

(XC1)C2 = X† = (XC2)C1

The conjugate of a matrix satisfies the property,

(XY )† = Y †X†

A similar rule holds for the partial transpose. We have that

(XY )C1 = (Y †X†)C2 (XY )C2 = (Y †X†)C1

If X = X1 ⊗X2 is a separable operator, this identity can be further simplified. We have that,

(XY )C1 = (1d ⊗X2)Y
C1(X†

1 ⊗ 1d) (Y X)C1 = (X†
1 ⊗ 1d)Y

C1(1d ⊗X2)
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