
Quantum States via Random Tensor Method

Owen L. Howell1

1Department of Electrical and Computer Engineering,
Northeastern University, Huntington Ave., Boston, MA 02215, USA

(Dated: January 9, 2025)

The random features method is a powerful technique for computing kernel matrices with reduced
time and memory overhead. In these notes, we show that tensor contractions of one dimensional
quantum states can be replaced by their averages, if matrices in the tensor decomposition are
incoherent.

I. INTRODUCTION

Tensor networks are a standard method in representation of quantum states. In one dimension, tensor networks
can be used to decompose eigenvectors of low entanglement as contractions of smaller tensors. Similar to how the
Bethe-Anasatz provides a theoretical solution to a large class of 1d systems, tensor networks decomposition’s have
allowed for numerical solvablity of almost all one-dimensional problems of interest.

Despite work developing theories for two tensor methods for two-dimensional states, although (in the authors
opinion) a fully satisfactory solution to the two-dimensional problem remains elusive, in this note, we suggest a
few new tools that may help solve the 2d case. In this work, we show that replacing exact tensor contractions as
contractions over random tensors can be used to reconstruct states with low-entanglement with high-fidelity. This is
an interesting use case of concentration inequalities [1].

Our proposed random tensors approach is akin to the quantum typicality trick where the deterministic Tr[O]
operation can be well approximated by computing the inner product of O with a small number of randomly drawn
states |Ψ⟩. This phenomena is related to the concept of eigenvector de-localization. Eigenvector delocalization was
observed in [2]. In someways, it is quite surprising that eigenvector delocalization has not been applied to tensor
representations of quantum systems. The validity of the random tensor assumption hinges on property that tensors
are incoherent in the standard Euclidean basis. For one dimensional systems, this can be proven using the canonical
form of the PEPS.

We summarize our contributions as follows

• Akin to the quantum typicality trick, we show that exact contractions of Matrix Products States can be computed
accurately as contractions of random tensors.

• We derive an explicit concentration bound on the error of this approximation.

• It has generally been understood that area low-entanglement of low-spectrum quantum states serves as. We
suggest that similar representations can be found based on matrix incoherence.

A. Random Tensor Networks

Random tensor networks are of huge interest in quantum gravity [2]. Specifically, random tensor networks have been
used as a tractable toy model of bulk-boundary correspondence [3]. By parameterizing the states as contractions of
tensor, it is possible to develop field theories of low random states. It should be noted that in our work there is no
randomness in the tensors Ψs1s2...sk . We are replacing a totally deterministic tensor Ψs1s2...sk as an contraction of
random tensors for computational purposes.

II. RANDOM TENSOR DECOMPOSITION

Let Ψs1s2...sk be a tensor carrying N -indices. The SVD can be made between the i-th and (i+ 1)-th index,

Ψs1s2...sk = Us1s2...si−1
q ΛqV̄

s1s2...si−1
q

where the matrix Λq ≥ 0 has positive entries.

• Show a tensor diagram here
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For notational simplicity, we will work with the exponential of the singular values

Λq = exp(λq)

The random features method consists in replacing the deterministic tensor Ψs1s2...sk with an expectation over random
tensors

Ψs1s2...sk = Eq[U
s1s2...si−1
q V̄ si+1si+2...sk

q ]

where the random variable q is drawn from the distribution

Pr[q] =
exp(λq)∑
q′ exp(λq′)

Repeating this process,

Ψs1s2...sk = Eq1q2...qk−1
[Us1

q1 U
s2
q1q2 ...U

sk−1
qk−2qk−1

Usk
qk−1

]

where each qi is drawn from the distribution

qi ∼
exp(λq)∑
exp(λq)

An important quantity is the entropy of qi random variable,

S(qi) = −Eq[log(q)]

we will see that this quantity, S(qi), combined with the coherence µ(U) determines the validity of the random tensor
approximation. The key observation is that each random variable qi is independent. If each of the deterministic
sub-tensors U

sisi+1
qiqi+1 is ‘spread out’ in the Euclidean basis, then errors should self-average and the random variable

Us1
q1 U

s2
q1q2 ...U

sk−1
qk−2qk−1U

sk
qk−1

should be tightly concentrated around its mean. We can then evaluate terms of the form
Ψs1s2...sk by random sampling instead of exact contraction. Consider the cost of explicitly evaluating the tensor
Ψs1s2...sk on each index. The naive contraction method requires a summation over k B-dimensional bonds, and takes
roughly O((d1 + d2 + ...+ dk)B) multiplications.

• There are ‘smart’ ways to contract matrices, how does this compare with existing method? Comment on
complexity of exact computation vs random sampling

III. CONCENTRATION BOUNDS

The validity of the random tensor contraction approximation

Ψs1s2...sk = Eq1q2...qk−1
[Us1

q1 U
s2
q1q2 ...U

sk−1
qk−2qk−1

Usk
qk−1

]

depends on the concentration of the random variable Us1
q1 U

s2
q1q2 ...U

sk−1
qk−2qk−1U

sk
qk−1

to its mean. Because each of the
random variables qi are independent random variables, we expect that errors self-average. Specifically, we aim to
prove concentration bounds of the form

Pr[ |Us1
q1 U

s2
q1q2 ...U

sk−1
qk−2qk−1

Usk
qk−1

−Ψs1s2s3...sk ]| ≥ ϵ ] ≤ exp(−σ2ϵ2)

for some σ > 0. If a bound of this form holds, then, the m-sample average

Ψs1s2...sk
m =

1

m

m∑
j=1

Us1
qkjq1j

Us2
q1jq2j ...U

sk−1
q(k−2)jq(k−1)j

Usk
q(k−1)jqkj

can be ϵ-close to the true average by taking m ≥ σ2

ϵ2 as

Pr[ |Ψs1s2...sk
m −Ψs1s2s3...sk ]| ≥ ϵ ] ≤ ϵ)

holds for any choice of m ≥ σ2

ϵ2 .
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A. Single Random Index

Let us first consider the case of a single random index. Let

Ψs1s2 =

B∑
q=1

Us1qΛqV̄qs2

where B is the bond dimension of the tensor network. Let us define the random vectors (Uq)s1 = Us1,q and (Vq)s1 =
Vs1,q. Using the random features method, we can write this as

Ψs1s2 = Eq[Us1qV̄qs2 ] = Eq[UqV
†
q ]s1s2

where q is drawn from the exponential distribution of λq. This is an unbiased estimator as Ψs1s2 = Eq[Us1qV̄qs2 ]
Let us assume that the matrices Us1q and Vs1,q are incoherent, so that

µ(U) = ||U ||2→∞ ≤ µU

√
B

d
and µ(V ) = ||V ||2→∞ ≤ µV

√
B

d

where d is the dimension of the Hilbert space and B is the bond dimension. Now, consider the generating function of
the random variable Us1qV̄qs2 ,

Eq[exp(zUs1qV̄qs2)] =

∞∑
n=0

zn

n!
Eq[(Us1qV̄qs2)

n]

consider the term Eq[(Us1qVqs2)
n]. We can bound each term in this expectation using the tensor product trick. We

may write this as

(Us1qV
†
qs2)

n = Tr[(UqV
†
q ⊗ UqV

†
q ⊗ ...⊗ UqV

†
q )s1s1...s1,s2s2...s2 ]

Thus, we have that

E[(Us1qV
†
qs2)

n] = E[UqV
†
q ⊗ UqV

†
q ⊗ ...⊗ UqV

†
q ]s1s1...s1,s2s2...s2

By definition

E[UqV
†
q ⊗ UqV

†
q ⊗ ...⊗ UqV

†
q ] =

1∑B
q′=1 exp(λq′)

[

B∑
q=1

exp(λq)UqV
†
q ⊗ UqV

†
q ⊗ ...⊗ UqV

†
q ]

Thus, using the identity

||A⊗B||2→∞ ≤ ||A||2→∞||B||2→∞

We have that,

E[UqV
†
q ⊗ UqV

†
q ⊗ ...⊗ UqV

†
q ]s1s1...s1,s2s2...s2 ≤ µ(U)nµ(V )n

Thus, we have that

Eq[exp(zUs1qV̄qs2)] ≤ exp(µ(U)2µ(V )2z2)

Ergo, using basic properties of sub-Gaussian random variables,

Pr[ |Ψs1s2 − Us1qV
†
qs2 | ≥ ϵ ] ≤ exp(−µ(U)2µ(V )2ϵ2)

so that the random variable is sub-Gaussian with concentration parameter µ(U)µ(V ). Thus, if we assume that both
U and V satisfy the bounded coherence condition

µ(U) ≤ µU

√
B

d
µ(V ) ≤ µV

√
B

d

we have that

Pr[ |Ψs1s2 − Us1qV
†
qs2 | ≥ ϵ ] ≤ exp(− d2

µ2
Uµ

2
V B

2
ϵ2)

Note that the bond dimension is generically B ∼ d. Thus, by taking M ≥ samples, we have that

Pr[|Ψs1s2 − Us1qV
†
qs2 | ≥ ϵ] ≤ exp(

−ϵ2

µ2
Uµ

2
V

)

Ergo, the concentration properties are set by the coherence of the random matrices µ2
U and µ2

V .
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B. General Case

Now, that we have understood the single bond case, let us consider the general case. Suppose that the state Ψ can
be decomposed as

Ψs1s2...sk =

B∑
q1=1

B∑
q2=1

...

B∑
qk−1=1

Us1
q1 Λq1U

s2
q1q2Λq1U

s2
q1q2 ...U

s2
q1q2

We can replace the deterministic tensor as a a contraction over random tensors. Via

Ψs1s2...sk = Eq1q2...qk [U
s1
q1 U

s2
q1q2U

s3
q3q4 ...U

sk−1
qk−1qk−1

Usk
qk
]

Now, consider the generating function of the random variable Us1
q1 U

s2
q1q2U

s3
q3q4 ...U

sk−1
qk−1qk−1U

sk
qk
. The n-th moment is

given by

Eq[(U
s1
q1 U

s2
q1q2U

s3
q3q4 ...U

sk−1
qk−1qk−1

Usk
qk
)n]

Again using the tensor product trick, we may write

(Us1
q1 U

s2
q1q2U

s3
q3q4 ...U

sk−1
qk−1qk−1

Usk
qk
)n = Tr[(Uq1Uq1q2Uq3q4 ...Uqk−1qk−1

Uqk)
⊗n]s1s2...sk

Thus, we have that

Tr[E[(Us1
q1 U

s2
q1q2U

s3
q3q4 ...U

sk−1
qk−1qk−1

Usk
qk
)n]] ≤

k∏
i=1

µ(Uk)
n

Ergo, we have that

Tr[Eq[exp(zU
s1
q1 U

s2
q1q2U

s3
q3q4 ...U

sk−1
qk−1qk−1

Usk
qk
)]] ≤ exp(

k∏
i=1

µ(Uk)z
2)

so that the random tensor approximation is a sub-Gaussian random variable with concentration parameter less than the
product of the coherence of µ(Uk). Thus, if each of the coherence’s µ(Uk) are small, the random tensor approximation
of Ψ will be tightly concentrated around the true value.

C. Incoherence of Generic Systems

Previous sections have shown that under the assumption of incoherence, tensor contractions can be replaced with
expectations over random tensors. In this section we argue that generic states should be highly incoherent.

Consider a system of N sites, each of local dimension Hilbert space dimension d. Let 1 << i << N be a state near
the middle of the chain. Consider the Schmidt decomposition of the state |Ψ⟩

|Ψ⟩ =
min(di,dN−i)∑

i=1

Λi|Ψi
L⟩ ⊗ |Ψi

R⟩

where |Ψi
L⟩ are the left Schmidt eigenvectors and |Ψi

R⟩ are the right Schmidt eigenvectors. Schmidt eigenvectors are
orthonormal ⟨ΨR

i |ΨR
j ⟩ = δij . Consider the B-dimensional sub-space spanned by the right eigenvectors

PR
i =

B∑
i=1

|Ψi
R⟩⟨Ψi

R| = PP †

We expect that this subspace is not localized in any of the local states |si+1si+2...sN ⟩. The states |ΨR
i ⟩ are of dimension

di and so the projector PR
i is to a subspace of dimension B. We conjecture that

max
x∈di

||e†xPL
i ||22 ∼ CR

√
B

di



5

where CR > 0 is some constant. This statement is equivalent to saying that the eigenvectors are maximally ‘spread
out’ among the basis states. Obviously, this (ref) does not hold for simple product states

|Ψ⟩ =
N⊗
i=1

|Φi⟩

but these product states have Schmidt values of one so that the random sampling method is actually exact.

• Specifically want to show that states with high-coherence are low-entangled states

• This suggest relation between entanglement and coherence?

Now, consider the canonical form of the matrix product states

|Ψ⟩ =
d∑

si+1si+2...sk=1

U
si+1

iqi+1
Λ(i+1)
qi+1

Usi+2
qi+1qi+2

Λ(i+2)
q2 ...Usk

qk
|s1s2...sk⟩

Using this decomposition, the left-Schmidt eigenvectors are given by

|ΨR
i ⟩ =

d∑
s1s2...si=1

U
si+1

iqi+1
Λ(i+1)
qi+1

Usi+2
qi+1qi+2

Λ(i+2)
q2 ...Usk

qk
|s1s2...si⟩

Using the randomization procedure, we may write

U
si+1

iqi+1
Λ(i+1)
qi+1

Usi+2
qi+1qi+2

Λ(i+2)
q2 ...Usk

qk
= Eq[U

si+1

iqi+1
U

si+1

iqi+1
...U

si+1

iqi+1
]

Thus, the bounded coherence assumption (ref), is equivalent to the assumption that,

||Usi+1

iqi+1
Λ(i+1)
qi+1

Usi+2
qi+1qi+2

Λ(i+2)
q2 ...Usk

qk
||2→∞ ≤ C

Now, note that

Usi+2
qi+1qi+2

Λ(i+2)
q2 ...Usk

qk

is a orthogonal matrix. Now, using the property ||AB||2→∞ ≤ ||A||2→∞||B||2, we have that

||Usi+1

iqi+1
Λ(i+1)
qi+1

Usi+2
qi+1qi+2

Λ(i+2)
q2 ...Usk

qk
||2→∞ = ||Usi+1

iqi+1
Λ(i+1)
qi+1

||2→∞
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V. COHERENCE

We review the concept of matrix coherence, first defined by [1]. Let U ∈ Cn×r be a matrix with orthogonal columns,
The coherence of U is defined as

µ(U) =
n

r
max

i∈{1,2,...,n}
||e†iU ||22

Note that this the coherence defined vis-a-vis the Euclidean basis. If we view the columns of the matrix as a subspace
of Rn, then the projector ΠU = UU† we have that

µ(U) =
n

r
max

i∈{1,2,...,n}
||ΠUei||22
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the coherence measures how ‘spread out’ the Euclidean basis vectors become when projected into U . Incoherence can
also be defined with the 2 → ∞ norm,

µ(U) = sup||x||2=1||Ax||∞

The bounded coherence property states that

||U ||2→∞ ≤ C

√
r

n

The coherence satisfies may nice properties. For example: Let U ∈ Cn×r and V ∈ Cn′×r′ be two matrices with
orthonormal columns. The tensor product U ⊗ V ∈ Cnn′×rr′ then also has orthonormal columns. Consider the
coherence of the tensor product of U and V ,

µ(U ⊗ V ) =
nn′

rr′
max
ij

||(UU† ⊗ V V †)(ei ⊗ ej)||22

Using the properties of the tensor product ||X ⊗ Y ||2 = ||X||2||Y ||2, we have that

µ(U ⊗ V ) =
nn′

rr′
max
ij

||(UU† ⊗ V V †)(ei ⊗ ej)||22 = [
n

r
max

i
||UU†ei||22][

n′

r′
max

j
||V V †ej ||22] = µ(U)µ(V )

so that the coherence of the tensor product of two matrices is the product of each coherence.
Subjectivity The 2 → ∞ norm satisfies two important properties

||AB||2→∞ ≤ ||A||2→∞||B||2, ||CA||2→∞ ≤ ||C||∞||A||2→∞
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